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Survey of the mathematical theory of fish locomotion
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Abstract. In this paper an attempt is made to give a survey of the mathematical approach to the description
of the swimming of fish. This type of investigation is of interest because it gives insight in the fundamentals of
the interaction of the body of the fish and the fluid. Sir James Lighthill considered this problem in a very lively
way by showing that simple ideas can be the nucleus of deep mathematical investigations. He and, besides him,
T.Y. Wu can most probably be regarded as the founders of the hydrodynamical description of fish locomotion.
They have stimulated many capable theoreticians to contribute to this rich field of beautiful problems. Of course,
the mathematical investigations were stimulated by the many experimental discoveries already made earlier by
prominent biologists.
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1. Introduction

This James Lighthill Memorial Paper bears only upon part of the many activities of Sir James
Lighthill, namely upon the mathematical theory of the swimming of fish and cetaceans. It
is well-known that M.J. Lighthill considered many aspects of fluid mechanics, as follows
from his collected papers which are covered by four volumes [1]. Besides his mathematical
approach to fish locomotion Lighthill went, as he says himself with the help of colleagues
in zoology, deeply into the biological background of the different phenomena that he investi-
gated. Along with Lighthill, Wu must also be mentioned as the author of a number of papers
which contribute to the mathematical foundation of the subject.

We will now give a brief survey of the research on fish locomotion which started early
in history. According to Alexander in ‘The history of fish mechanics’ [2], which we follow
in a strongly abridged way, already Aristotle considers in some of his works the anatomy
and locomotion of swimming creatures. After this, however, it took a long time before fish
mechanics really made progress.

There was a real increase in research activities during the final stages of the 17th century.
For instance research was carried out with respect to the swim bladder. At that time Torri-
celly had developed the mercury barometer and von Guericke had invented the air pump. By
decreasing the pressure on the surface of the water in a vessel in which a fish was present,
the bladder of the fish expanded, by which the fish rose to the surface and could not swim
downwards. When the original pressure was restored, the fish sank to the bottom of the vessel
since, as turned out by dissection, too little air was left in the bladder.

From about 1700–1800 research on fish was not making much progress. Its revival was
due to the further development of apparatuses for measuring pressures and to the invention
of photography and film by which the movements of the fish could be recorded. Some names
are A. Moreau regarding measurements at the bladder and E.J. Marey for the recording of fish
movements.

After 1910 until 1950 research was done, not only by zoologists, but also by engineers,
which yielded a fruitful collaboration. For instance, wooden models of fish were towed through
water and their resistance measured. Also, this resistance was investigated by letting weighted
dead fish sink, head first, in a tank and by using optical arrangements for measuring their
velocity.

In this period Breder in ‘The locomotion of fishes’ [3] published a review of fish swimming
in which he gave names to a number of swimming forms of which we mention the follow-
ing three: first, the anguiliform which is named after the swimming of the eel; second, the
carangiform, where the front part of the body has little flexibility and the flexural movements
are confined to the rear half or the rear one-third of the body length; third, the balistiform,
where the propulsion is caused by the synchronized movements of dorsal and anal fins, while
the body and the caudal fin are held rigid, by which the latter is of no direct use for the
propulsion of the fish. For other forms of swimming we refer for instance to Blake in his book
‘Fish locomotion’ [4].

In the years around 1935 J. Gray studied the waves travelling posteriorly along the body of
some fish such as the eel or the whiting. For this he used a machine for artificially imparting
a wave motion to a flexible model or a dead fish. The famous paradox formulated by him
about the power required for the propulsion of some fast swimming aquatic animals will be
considered in Section 5.
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As we already mentioned, the joint efforts of zoologists and engineers had been fruitful;
however, yet a third group entered the scene in 1950 or thereabouts, namely the mathemat-
ically oriented scientists. These developed theories by which it became possible to make a
quantitative analysis of swimming propulsion as a continuation of the previously developed
qualitative theories.

Even the abstract mathematical theory of functional analysis seems to be useful for the third
group. One reason is that it is of interest to optimize the swimming motion of a mathematical
model of the fish, or part of it, with respect to its losses of kinetic energy into the fluid. Then,
however, it has to be proved that, under certain suitable conditions, such an optimum motion
does exist. This need not be the case, as we will demonstrate by rather simply formulated
problems.

One of the early mathematically oriented investigators of the swimming of aquatic animals
was G.I. Taylor, who published the article ‘Analysis of the swimming of long and narrow
animals’ [5] in which he developed a so-called resistive theory. A bending wave travels with
constant speed along the body of the animal. The forces per unit of length of each element
of the swimming body are assumed to be the same as the resistance experienced per unit of
length by a long cylinder with the same surface structure as that of the body and moving
through the fluid with the same but now steady velocity and having the same inclination to the
direction of the relative flow. This theory is suitable for the swimming of snakes, leeches and
certain marine worms.

Later theories are often of a different type, for instance the reactive theory. In contrast with
the mentioned resistive theory, this type of theory considers the flow of the fluid outside the
thin boundary layer on the fish’s body. By this the inertial effects of the fluid are dominant and
an inviscid fluid model can be used.

After Lighthill’s seminal paper ‘Note on the swimming of slender fish’ [6] and the funda-
mental paper of Wu ‘Swimming of a waving plate’ [7], many other mathematically oriented
articles using reactive theories followed. This led to hydrodynamics getting a strong foothold
in research on the swimming of fish.

In this paper we will consider reactive theories with an emphasis on basic principles of the
swimming of fish and on the captivating early period when mathematically oriented studies
were first published.

2. Some basic hydrodynamic concepts

It is of interest for the understanding of the swimming motion of fish to have insight in how
momentum and energy are conveyed to an inviscid and incompressible fluid by a body with a
time-dependent shape that moves in a fluid.

The fluid is assumed to be at rest at infinity with respect to a Cartesian coordinate system
(x, y, z) (Figure 1). First we derive an expression for the change of the kinetic energy E of
the fluid when a body B with boundary ∂B is moving through the fluid. The body is allowed
to change its shape as well as its volume and can shed vorticity into the fluid. B is surrounded
by a large control sphere H with radius RH fixed in space. The region inside H , with the
exception of B, is denoted by 
.

Consider the equation of motion for an inviscid and incompressible fluid and the equation
for the conservation of mass of the fluid

ρ
dv
dt

= ρ
{
∂v
∂t

+ (v · grad)v
}

= −gradp, div v = 0, (2.1)
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Figure 1. Deforming body B surrounded by large control sphere H .

where ρ is the density of the fluid, v = (vx, vy, vz) its velocity and p the pressure.
It follows from (2.1) that

ρ

∫



v ·
(
∂v
∂t

+ vx ∂
∂x

v + vy ∂
∂y

v + vz ∂
∂z

v
)

dVol = −
∫



v · gradp dVol. (2.2)

Using div v = 0, we can write the left-hand side of (2.2) as

1
2ρ

∫



{
∂

∂t
v2 + div(v2 · v)

}
dVol. (2.3)

The first part of this integral can be written as

1
2ρ

∫



∂

∂t
v2 dVol = 1

2ρ
d

dt

∫



v2dVol − 1
2ρ

∫
∂B

v2 · (v · n) dSB =

= dẼ

dt
− 1

2ρ

∫
∂B

v2 · (v · n) dSB,

(2.4)

where Ẽ is the kinetic energy of the fluid in 
 and n is a unit normal on ∂B or on H , in both
cases pointing out of 
. The second part of (2.3) can be written as a surface integraL. Then,
by using (2.4), we can reduce (2.3) to

dẼ

dt
+ 1

2ρ

∫
H

v2 · (v · n) dSH . (2.5)

The right-hand side of (2.2) can be brought into the form

−
∫



div(p · v) d Vol = −
∫
∂B

p · (v · n) dSB −
∫
H

p · (v · n) dSH . (2.6)

It is easily seen that the integration over H tends to zero for RH → ∞. Then, by (2.5) and
(2.6), we find by (2.2) for the rate of change of the kinetic energy E in the fluid

dE

dt
= −

∫
∂B

p · (v · n) dSB, (2.7)
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Figure 2. Two-dimensional swimming profile of zero-thickness, moving with velocity U in negative x-direction,
suction force Ts(t) at leading edge, length coordinate ξ with 0 ≤ ξ < l.

which states that the work carried out by the body on the fluid is transformed into kinetic
energy of the fluid.

The kinetic energy that is thus transmitted to the fluid need not be lost but can be recovered
completely or partly by succeeding motions of B. A complete recovery is easiest when no
vorticity is shed into the fluid. For the sake of simplicity, consider a sphere without material
mass of itself that is accelerated in the fluid by a constant force K in a fixed direction from
rest to a velocity V (t), without shedding vorticity. Then it has ‘around it’ kinetic energy E of
the fluid which is proportional to V 2 and which can be written as E = 1

2m̃V
2, where clearly

such a constant m̃ must exist. This is called the virtual mass of the sphere. From conservation
of energy we have the following relations

dE

dt
= m̃V dV

dt
= KV → K = d

dt
(m̃V ), (2.8)

which means that (m̃V ) is the momentum of the fluid ‘around the body’ in the direction of the
motion.

Then by bringing the body to rest (V = 0) again by means of a decelerating force, the
kinetic energy of the fluid is brought to zero and is recovered by the decelerating force.

Unfortunately, however, by extracting kinetic energy from the fluid by muscular motions of
a fish, this energy cannot be used again completely by the fish. The reason is that, as biologists
have shown, muscles have a positive energy cost, also when they do negative work. See also
the second paragraph of Section 14.

In the case of a two-dimensional linear theory for a swimming profile (Figure 2), the
energy relation (2.7) can also be used, but now per unit of length in the z-direction which
is perpendicular to the (x, y) plane. Then, when the thickness of the profile tends to zero, the
flow around the nose develops negative pressures which tend to −∞, while the ‘area of the
nose’ tends to zero. When the limit is taken, this causes a suction force Ts(t) per unit of length
acting at the nose in the direction of swimming.

The profile of thickness zero and length l swims with velocity U in the negative x-direction
and remains in the neighbourhood of the x-axis in the case of a linear theory. Along the profile
there is a length coordinate ξ which varies from ξ = 0 at the leading edge to l at the trailing
edge of the profile. The time-dependent shape is y = h(ξ, t) = O(ε), where ε is a small
parameter (ε/ l 	 1). It can be proved that the suction force Ts(t) = O(ε2). Within the
accuracy of the linear theory the vorticity at the profile and the vorticity in the wake are at the
x-axis.

We find from (2.7)

dE(t)

dt
=

∫ l

0
[p(ξ, t)]+−

(
∂

∂t
+ U ∂

∂ξ

)
h(ξ, t) dξ − UTs(t) = O(ε2), (2.9)
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where [p(ξ, t)]+− = p+(ξ, t) − p−(ξ, t) = O(ε) is the pressure jump over the profile which,
by the Kutta condition, has to be zero at the trailing edge ξ = l, so as to have a smooth flow at
the trailing edge. When the pressure jump [p]+− in the neighbourhood of the nose of the profile
behaves as ρUQ(t)/ξ 1/2 for ξ → 0, then the suction force, reckoned positive in the negative
x-direction, has the value

Ts(t) = ρπ
4
Q2(t) = O(ε2). (2.10)

The power P(t) needed for maintaining the swimming motion is

P(t) =
∫ l

0
[p(ξ, t)]+−

∂h

∂t
(ξ, t) dξ = −

∫ l

0
f (ξ, t)

∂h

∂t
(ξ, t) dξ = O(ε2), (2.11)

where f (ξ, t) = −[p(ξ, t)]+− are the external forces per unit of length, reckoned positive
in the positive y-direction, needed to let the profile (which has neither bending stiffness nor
inertia) execute its motion h(ξ, t). In fact, these forces can replace the profile when they are
placed on the right-hand side of the linearized version of the equation of motion (2.1).

The thrust T (t) per unit of length brought about by the profile, reckoned positive in the
negative x-direction, is

T (t) = −
∫ l

0
[p, (ξ, t)]+−

∂h

∂ξ
(ξ, t) dξ + Ts(t) = O(ε2). (2.12)

Hence we find from (2.9), (2.11) and (2.12)

dE(t)

dt
= P(t)− UT (t), (2.13)

which shows that the power P(t), needed to move the profile, minus the useful work/second,
UT (t), carried out by the profile, equals the rate of change of the kinetic energy in the fluid.
This increase of energy does not need to remain in the fluid; it can be drained partly by the
motion h(ξ, t) of the profile at later moments. When, however, we consider a periodic motion
of the profile with time period τ and when the mean shed energy is E per unit of time with

E = 1

τ

∫ τ

0

d

dt
E(t) dt �= 0, (2.14)

then E is lost per unit of time. This kinetic energy is left behind and equals the mean kinetic
energy of the fluid induced by the shed vorticity over a length U far behind the profile.

The hydrodynamic efficiency η of the propulsion is defined by

η = UT

P
= UT

UT + E , (2.15)

which is the mean useful power UT divided by the total mean power P . In this linear theory,
where |v|, p and h are O(ε) and T s = O(ε2), we have in general

η = 1 −O(ε0), (2.16)

which does not tend to 1 for ε → 0.
Consider motions of the profile given by h̃(ξ, t) = ch(ξ, t), where c is some constant.

Then, the vorticity of the previous profile with motion h(ξ, t) is multiplied by c and also its
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slopes ∂h(ξ, t)/∂ξ . The mean value of the thrust is multiplied by c2. Hence the mean value
of the lost kinetic energy, which depends on v2, is also multiplied by c2. It follows that, in the
linearized theory, the efficiency η (2.15) is the same as the efficiency of the original motion
h(ξ, t).

Finally we mention the case of small-amplitude swimming propulsion by two profiles, the
first one swimming in front of the second one and both in an ε neighbourhood of the x-axis.
Then the second profile can theoretically extract most of the kinetic energy (of O(ε2)) left
behind per second by the first one by “approximately annihilating” the vorticity shed by the
first one. The kinetic energy can be absorbed, so that only energy of O(ε3) is left behind per
second downstream of the trailing edge of the second profile. By this the efficiency of the
cooperating two profiles, which in fact form one slotted profile, can be increased and becomes
instead of (2.16)

η = 1 −O(ε). (2.17)

When ε is sufficiently small, (2.17) is more favourable than (2.16). For more information
about (2.17) we refer to ‘Hydrodynamic propulsion and its optimization’ [8, pp. 166, 167,
201, 202] by J.A. Sparenberg.

This phenomenon can possibly be of interest for the interaction of the caudal fin of a fish
with vorticity shed by its dorsal fin. However, we will discuss such interactions in Sections 7
and 10 where the points of view of Lighthill and Wu are given.

3. On the non-existence of optimum swimming motions and on efficiency-increasing
travelling body waves

It is of interest to try to find algorithms for calculating optimum swimming motions with a
high efficiency η (2.15). Then, for a desired mean thrust, the mean lost kinetic energy per unit
of time has to be as small as possible. However, such an algorithm can be found only when an
optimum motion does exist.

For a proof of the existence of optimum motions it seems that the abstract mathematical
methods of functional analysis are unavoidable. One must then consider the kinetic energy lost
per unit of time as a functional on a space of admitted motions. The functional and the space
of motions should each possess properties ensuring that the functional assumes its minimum
on at least one of the admitted motions. In Section 12 we return to this subject.

The opposite, however, namely the case when optimum motions do not exist, is also of
interest. Then one is led to believe that extra constraints have to be put on the admitted motions
so that an optimum motion exists and an algorithm can do its work to find such a motion.

When there does not exist an optimum motion, this does not mean that there are no motions
which have a high efficiency within the framework of the considered theory. On the contrary,
a non-existence proof can be based on the construction of a minimizing series of motions for
which the loss of kinetic energy tends to zero, while the demanded thrust is still delivered. A
general line of thought for a non-existence proof holding for any type of propulsion, either
two- or three-dimensional, linear or nonlinear, is as follows.

(i) Assume it is possible to prove that, for any periodic motion F , for instance in the
two-dimensional case y = h(x, t), which satisfies the demanded constraints on its shape and
delivers the desired mean thrust (per unit of length) T > 0, there exists a B > 0 such that the
lost mean kinetic energy/sec E = B, where B depends on the considered motion.
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(ii) Assume that it is possible to construct a minimizing series of motions Fn, for instance
in the two-dimensional case y = hn(x, t), n = 1, 2, . . . , which satisfy the constraints on their
shapes and deliver the mean thrust T for which the mean kinetic energy losses are En = Bn
with Bn → 0 for n→ ∞.

(iii) Then it follows that there does not exist an optimum motion F ∗ satisfying the con-
straints on its shape and yielding the desired mean thrust T . The reason is that, if such a F ∗
existed it has by (i) lost kinetic energy per unit of time E

∗ = B∗ > 0. However, then we can
find by (ii) a Fn with 0 < Bn < B∗ which has lower kinetic energy losses than F ∗, so F ∗ is
not the optimum motion and hence there does not exist an optimum motion.

As an example of a non-existence proof of an optimum motion, we discuss the two-dimen-
sional linear theory of a swimming profile without constraints on its motion. This example
uses a method that shows how the thrust of a swimming profile can be favourably increased by
superimposing on its motion travelling waves with a velocity equal to the swimming velocity.
In a certain sense these waves occur also for the three-dimensional swimming motions of
fish; however, there the velocity of the travelling wave is somewhat higher than the swimming
velocity of the fish; see Section 5 point (5) and Section 6 below (6.22).

The flexible profile of length l is in the neighbourhood of the x-axis, its nose is at x = 0
while the fluid comes in with a velocity U in the positive x-direction. The profile has to
deliver a mean thrust T > 0 in the negative x-direction at the expense of a minimum energy
loss. When the meaning is clear, the additions per unit of length or per unit of time are often
suppressed.

That condition (i) is satisfied in the linear theory, when there is no slot in the profile, is
discussed in [8, p. 307 and further]. This holds in the linear theory when there is no slot in the
profile.

Now consider the lateral motion y = a1h(x, t) where a1 is a parameter. This motion is
such that it induces, for instance, the following pressure jump [p]+− over the profile.

[p]+− = a2
1

(
sin π

x

l
sin π

U

l
t

)
, 0 � x � l. (3.1)

The shape y = a1h1(x, t) can be calculated and assumed to be known. Then at the + side of
the profile (Figure 2) we have a positive pressure for nl/U < t < (n+1)l/U, n = 0, 2, 4, . . . ,
and a negative pressure for n = 1, 3, 5, . . . . At the − side the pressures are opposite for these
time intervals.

On this motion we superimpose a travelling wave y = a2h2(x − Ut) of which a possible
shape is drawn in Figure 3; it has a vertical part of height a2. The wave may also have more
smoothly varying values of y, but that complicates the reasoning. The vertical part translates
with a velocity U in the positive x-direction and by leaving the profile at x = l, starts a new
at x = 0, but is then reversed. It translates as in Figure 3a when the pressure is positive at the
+ side of the profile and as in Figure 3b when the pressure is negative at the + side. Thus, it
introduces an extra thrust in the negative x-direction.

The mean kinetic energy E(a1) left behind by the motion y = a1h1(x, t) can be written as

E(a1) = a2
1E(a1 = 1), (3.2)

where E(a1 = 1) > 0 has some value that can be calculated. This lost energy is not changed
by adding the motion of the travelling wave y = a2h2(x − Ut) moving with the velocity U
and thus does not induce any velocity or vorticity in the fluid within the realm of the linear
theory.
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Figure 3. Shapes of wave y = a2h2(x − Ut), (a) with [p]+− > 0, (b) with [p]+− < 0.

The mean thrust of the original motion y = a1h1(x, t) can be written as

T 1(a1) = a2
1T 1(a1 = 1), (3.3)

where T 1(a1 = 1) can turn out to be either positive or negative which is not important in what
follows. The wave y = a2h2(x−Ut) produces an extra mean thrust in the negative x-direction

T 2(a1, a2) = a2

{
a2

1

U

l

∫ l/U

0
sin2 π

U

l
t dt

}
= 1

2π
a2

1a2, (3.4)

because the force perceived by y = a2h2(x − Ut) is proportional to the height a2 of the step
and to the pressure jump (3.1) at x = Ut for 0 � t � l/U . Then, a1 and a2 have to be chosen
so that T 1(a1) + T 2(a1, a2) = T , which is the desired mean thrust reckoned positive in the
negative x-direction. Hence, the efficiency (2.15) becomes

η(a1, a2) = U {T 1(a1 = 1)+ a2/2π}
U {T 1(a1 = 1)+ a2/2π} + E(a1 = 1)

. (3.5)

When a1 → 0 and a2 increases as

a2(a1) = 2π{T − a2
1T 1(a1 = 1)}
a2

1

a1→0−→∞, (3.6)

the total thrust remains equal to T , while

lim
a1→0

η(a1, a2) = 1. (3.7)

We have now found a minimizing series of profile motions for a1 → 0 and a2 → ∞. It
follows from the general considerations (i), (ii) and (iii) that there does not exist an optimum
swimming motion in this linear two-dimensional theory when there are no constraints on
the shapes. It is seen that the amplitude of the motions of the minimizing series increases
unboundedly for a1 → 0 because a2 → ∞.

One might object that a linear theory is not valid then; this objection is correct. However,
a linear theory has not an intrinsic value for the amplitude above which the theory may not be
used and therefore a mathematical optimum motion cannot be found without further explicit
constraints on the shapes of the admitted motions.

Also, it can be shown [8] that, even under the constraint |h(x1t)| < δ, where δ is a given
number, there need not be an optimum motion. A minimizing series can also be found by
considering profiles y = a1h1(x, t;n) that induce pressure distributions with, instead of (3.1),
a pressure jump [pn]+− of the form
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Figure 4. Body consisting of two ‘deformable spheres’, connected by narrow tube.

[pn]+− = a2
1(−1)n sin πn

x

l
sin πn

U

l
t, n = 1, 2, . . . . (3.8)

Adequate shapes of superimposed travelling waves, say y = a2h2(x−Ut;n), can also be used
to construct a minimizing series of swimming motions which lose their meaning for n→ ∞.
In that case the amplitudes of the motions remain smaller than δ, but their wavelengths become
shorter and shorter, whence these shapes do not tend to a usable motion.

This tending to a non-usable motion of the minimizing series of swimming motions is a
general aspect of the non-existence of an optimum motion; see, for instance, [8] where some
non-existence proofs are discussed.

4. Self-displacement of a deformable body in a perfect fluid without shedding vorticity

Consider a Cartesian coordinate system (x, y, z) embedded in an inviscid and incompressible
fluid which is at rest with respect to the (inertial) coordinate system. A deformable body is
in this fluid and is at rest. Then the question arises: is it possible that the body moves itself
to another place by appropriate deformations, comes to rest there and has again its original
shape and orientation while no vorticity is shed into the fluid? The fluid is then again at rest
with respect to the (x, y, z) system. This movement elucidates elegantly the important idea of
virtual mass.

P.G. Saffman showed in his article ‘The self propulsion of a deformable body in a perfect
fluid’ [9] in a rather general way that this is possible. Here we discuss a simple example from
which the principle becomes clear. It holds analogously for more realistic-looking bodies.

In the position at rest the ‘animal’ consists of two spheres B1 and B2 of radius R (Figure 4),
the centres of which are at the x-axis and at a sufficiently large distance L � R apart, so
that their hydrodynamical interaction can be neglected. The spheres are connected by a very
narrow tube of negligible mass the cross-section of which has radius r 	 R. This tube can
lengthen and shorten itself and can thus exert forces K or −K with a fixed value of K on
the body parts at it ends or, when necessary, can lengthen or shorten itself without any force
action by just following the body parts.

Each sphere Bi(i = 1, 2) can change its shape into a flat axisymmetric ellipsoid, also
denoted by Bi (dashed lines in Figure 4), while preserving its volume and centre. The circular
midplane of such an ellipsoid is perpendicular to the x-axis. When m is the total mass (me-
chanical mass plus virtual mass) of the sphere of radius R, we can, by choosing an appropriate
flatness of the ellipsoid, make the total mass m̃ of the ellipsoid equal to m̃ = km for any chosen
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value k > 1. In the following an index i(i = 1 or 2) attached to a quantity means that the
quantity belongs to Bi . So the total mass mi of Bi can have the values mi = m or mi = km,
where from now on k has a chosen fixed value.

When xi is the x-coordinate of the centre of Bi, ui = dxi/dt, τ is an interval of time and
Ki is a force action on Bi in the positive x-direction, then we have for 0 � t � τ ,

mi
d2xi(t)

dt2
= Ki, ui(τ ) = Ki

mi
τ + ui(0), xi(τ ) = 1

2

Ki

mi
τ 2 + ui(0)τ + xi(0). (4.1)

We can distinguish the following steps:
(1) We start the process at t = 0 from rest with x1(0) = 0, u1(0) = 0, x2(0) = L, u2(0) =

0 and consider 0 � t � τ while

mi = km, K1 = −K, m2 = m, K2 = K. (4.2)

Then, analogous to (4.1), for t = τ :

u1(τ ) = − K
km
τ, x1(τ ) = − 1

2

K

km
τ 2, u2(τ ) = K

m
τ, x2(τ ) = 1

2

K

m
τ 2 + L. (4.3)

(2) Take m1 = km,K1 = 0,m2 = m,K2 = 0, τ � t � 2τ ; then u1 and u2 do not change
and we find for t = 2τ :

x1(2τ) = −3

2

K

km
τ 2, x2(2τ) = L+ 3

2

K

m
τ 2. (4.4)

(3) Take m1 = km,K1 = K,m2 = m,K2 = −K, 2τ � t � 3τ ; then we find for t = 3τ :

x1(3τ) = −2
K

km
τ 2, u1(3τ) = 0, x2(3τ) = L+ 2

K

m
τ 2, u2(3τ) = 0. (4.5)

(4) Take m1 = m,K1 = K,m2 = km,K2 = −K, 3τ � t � 4τ ; then we find for t = 4τ :

x1(4τ) =
(

1

2
− 2

k

)
K

m
τ 2, u1(4τ) = K

m
τ, x2(4τ) = L+

(
2 − 1

2k

)
K

m
τ 2,

u2(4τ) = −Kτ
km
.

(4.6)

(5) Take m1 = m, K1 = 0, m2 = km, K2 = 0, 4τ � t � 5τ ; then u1 and u2 do not change
and we find for t = 5τ :

x1(5τ) =
(

3

2
− 2

k

)
K

m
τ 2, x2(5τ) = L+

(
2 − 3

2k

)
K

m
τ 2. (4.7)

(6) Take m1 = m,K1 = −K,m2 = km,K2 = K, 5τ � t � 6τ ; then we find for t = 6τ :

x1(6τ) = 2

(
1 − 1

k

)
K

m
τ 2, u1(6τ) = 0, x2(6τ) = L+ 2

(
1 − 1

k

)
K

m
τ 2,

u2(6τ) = 0.

(4.8)

Now let B2 assume its original spherical shape. Then we have the starting configuration
again since u1(6τ) = u2(6τ) = 0 and the distance between B1 and B2 is again L. However,
because k > 1, the centres of B1 and B2 have moved along the x-axis over a distance 2(1 −
k−1)Kτ 2/m > 0.
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Figure 5. Robotic model of a swimming blue fin tuna. From Barret et al. [12]

After this we can repeat the process by which the deformable body can move over arbitrar-
ily large distances along the x-axis without shedding vorticity, starting from rest and coming
to rest again.

It is shown in [8, p. 63] that a body of finite extent, moving periodically through an inviscid
and incompressible fluid without shedding vorticity, cannot exert a force with a non-zero mean
value. This means that the swimming creature we just considered cannot develop a non-zero
mean thrust in its idealized environment.

5. Increase or decrease of drag by the body movements of swimming fish

There is a famous paradox formulated by J. Gray in his article ‘Studies in animal locomotion
VI. The propulsion powers of the dolphin’ [10]. Gray estimated among other things the power
needed for a dolphin of length 1·82 m to swim at a speed of 10·1 m/s. This he did by calcu-
lating the dolphin’s resistance by means of a drag coefficient based on a turbulent boundary
layer. He found that the required power was possibly about seven times the estimated muscular
power available for propulsion. This yields the paradox which is considered by a large number
of investigators.

The paradox is, however, rather difficult to tackle because of the lack of a common opinion
among investigators on the influence of the swimming motion on the resistance of the body.
Some opinions are that the resistance of the swimming body can be increased by a factor of
three with respect to the resistance of the body when it glides motionless through the water;
see for instance M.J. Lighthill’s ‘Large-amplitude elongated-body theory of fish locomotion’
[11].

In order to give some information about the latter problem we discuss the experimental
article of D.S. Barret et al., ‘Drag reduction in fish-like locomotion’, [12]. An experiment is
carried out by means of a robotic mechanism which has the shape of a blue-fin tuna of which
we give a short description.

The model has a caudal, a dorsal and a ventral fin; Figure 5. Its length L = 1·25 m; the
maximum lateral dimensions at midlength are height 0·3 m and width 0·21 m. The lunate tail
has a vertical span of 0·32 m.

The model consists of eight rigid links, the last one being the caudal fin. The links can rotate
with respect to their neighbouring links and are controled by strings moving over pulleys and
activated by a number of motors. The second link is fixed to a streamlined strut, which itself
is fixed to an overhead carriage. The first link and the third one are coupled so as to move in
antiphase. The links are covered by a skin structure that consists of layers of filter foam and
thin latex sheets.

The lateral motion of the ‘spinal column’ of the model has the shape
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y(x, t) = (C1x + C2x
2) sin(kx − ωt), (5.1)

where C1, C2, k and ω are parameters and x is measured from the edge of the second link.
An important dimensionless quantity is the Strouhal number St

St = fA/U, (5.2)

where f is the frequency of the oscillation, A the double amplitude of the tail at its junction
to the body and U is the swimming speed.

Drag reduction is said to occur when the net power supplied by the motors needed for
self-propulsion is less than the power needed to tow the body in stretched form with the same
speed.

In all experiments the swimming speed is U = 0·7 m/sec, the Reynolds number Ul/ν ≈
106 and the Strouhal number is St = 0·16. The following ranges of important quantities were
examined:

(1) Phase angle at the tail between lateral and angular motion, 80◦ � ψ � 100◦.
(2) Body wavelength, 1 m � λ = 2π/k � 1·5 m.
(3) Nominal angle of attack of tail, 15◦ ≤ α ≤25◦.
(4) Double amplitude A; drag reduction is not very sensitive to A for A > 0·13 m.
(5) Drag reduction occurred only when the phase speed of the travelling wave in the body

was larger than the swimming speed U .
For self-propelled motions maximum drag reductions of around, 50% were found, while

for extra thrust-producing motions drag reductions exceeding 70% were realized in some
cases. This latter drag reduction is perhaps of interest for the burst-and-glide swimming of
fish where extra thrust is needed for the acceleration phase of this type of swimming; see
Section 15 of this survey.

As possible reasons for drag reduction are mentioned in [12]:
(i) Laminarization of the boundary layer by the motion of the body.
(ii) Favourable interaction of the vorticity shed by the tail with that by the body, the dorsal

and the ventral fins.
It should be remarked that, in spite of the care that has been exercised in doing the mea-

surements reported in the paper under consideration, not all investigators are convinced that
drag reduction was indeed demonstrated. Hence, further experiments seem to be needed to
arrive at a common opinion about the very interesting influence of the swimming motion of a
fish on its drag. However, other mechanisms, such as the drag-reducing mucus or fish slime,
the induction and the maintenance of an appropriate turbulent boundary layer and a viscous
or dynamic damping capacity of the skin, have to be considered also [4].

6. On the swimming of slender fish

The already mentioned seminal article ‘Note on the swimming of slender fish’ [6], written by
Lighthill, appeared in 1960 and was a break-through in the mathematically oriented research
on the swimming of fish. It discusses a reactive theory where the forces on the moving body
of the fish are caused by the inertia of the water set into motion.

Lighthill’s slender-body theory uses a small parameter ε so that, when l is the length of
the body and U its swimming velocity, the lateral dimensions of the body are 0(εl) and the
induced velocities are 0(εU), while these quantities change sufficiently gradually along the



408 J.A. Sparenberg

x

y

z

ξ = o ξ = l

U S ξ

ξ

Figure 6. Slender fish swimming with velocity U in the negative x-direction, in the neighbourhood of the x-axis.

body. Then, roughly spoken, quantities in an equation which are of the lowest order in ε are
used, while quantities of a higher order are neglected.

First we discuss the more or less heuristic method that Lighthill presents in the first part
of his paper. An outline of the fish is drawn in Figure 6 as it swims with velocity U in the
negative x-direction. Along the fish we have a length parameter ξ with ξ = 0 at the nose of
the fish and ξ = l at the trailing edge of its tail. In the first instance we assume that the fish
has only a caudal fin with a vertical trailing edge; hence it has no dorsal or ventral fins.

During the swimming the cross-sections Sξ of the body will be moved in the z-direction
over a distance h(ξ, t) = 0(ε) without changing their shape.

Then, by the slenderness of the body, the fluid flow at ξ is nearly two-dimensional in the
neighbourhood of the body. We obtain an approximation of the flow by considering the flow
induced by a two-sided infinitely long cylinder Cξ with cross-section Sξ translating through
the fluid in the z-direction with the velocity

V (ξ, t) = ∂h

∂t
(ξ, t)+ U ∂h

∂ξ
(ξ, t). (6.1)

The first term at the right-hand side of (6.1) is the lateral velocity of the cross-section Sξ
and the second term expresses that the body of the fish is struck by the fluid at an angle
∂h(ξ, t)/∂ξ .

Per unit of length the cylinder Cξ has around it an amount of momentum in the z-direction
of magnitude (2.8), viz.

m(ξ)V (ξ, t), (6.2)

where m(ξ) is the virtual mass belonging to the cross-section Sξ .
Thus, the instantaneous force L in the z-direction per unit of length exerted by the fluid on

the body becomes (2.8):

L(ξ, t) = − d

dt
{V (ξ, t)m(ξ)} = −

(
∂

∂t
+ U ∂

∂ξ

)
{V (ξ, t)m(ξ)}. (6.3)

Using L(ξ, t) we may calculate other quantities such as the mean power P that the fish has to
perform during swimming. After some manipulations Lighthill finds

P = −
∫ l

0

∂h

∂t
(ξ, t)L(ξ, t) dξ = Um(ξ)

[
∂h(ξ, t)

∂t

{
∂h(ξ, t)

∂t
+ U ∂h(ξ, t)

∂ξ

}]∣∣∣∣∣
ξ=l
, (6.4)

where a bar stands for taking the mean value with respect to time.
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In this theory the loss of kinetic energy into the fluid occurs at the trailing edge of the tail of
the fish. Per unit of length, the amount of kinetic energy at the end of the tail is 1

2m(l)V
2(l, t).

Because the fish swims with the velocity U , it follows that the rate of shedding kinetic energy
into the fluid behind the tail becomes

1
2Um(l)V

2(l, t). (6.5)

Then, by assuming that the conservation of energy analogous to (2.13) holds also in this
theory, we find for the mean value of the thrust T , after some reduction

TU = P − 1
2Um(l)V

2(l, t) = 1
2Um(l)

{(
∂h

∂t
(ξ, t)

)2

− U 2

(
∂h(ξ, t)

∂ξ

)2
}∣∣∣∣∣
ξ=l
. (6.6)

These more or less heuristic considerations, as Lighthill himself says, ‘are attractively
simple but may not be overwhelmingly convincing’. Therefore he also gives an analytical
derivation of the above results, which then turn out to be correct.

We will give an impression of Lighthill’s expert mathematical justification of the above
results by discussing two of its salient points. Now we assume the undisturbed fluid to flow
with a velocity U in the positive x-direction with respect to the (x, y, z) system, while the
fish’s nose stays in the neighbourhood of the origin. One of the difficulties of the theory is the
formulation of the exact boundary conditions on the swimming body for the velocity field of
the fluid. This we will discuss first.

The surface S of the body of the fish, when it is stretched and at rest, is in the neighbour-
hood of the x-axis for 0 ≤ x ≤ l. In this stretched condition the surface of the body is denoted
by:

F(x, y, z) = 0. (6.7)

When the fish swims, its cross-sections Sx get the already mentioned lateral displacement
h(x, t) in the z-direction. In order to find the flow boundary conditions on the body, Lighthill
introduces a new coordinate system (X,Y,Z) and a time T̃ which are related to the original
ones by

X = x, Y = y, Z = z − h(x, t), T̃ = t. (6.8)

Hence, there exist the relations h(x, t) = h(X, T̃ ) (same formulas) and

∂

∂x
= ∂

∂X
− ∂h
∂x

∂

∂Z
,

∂

∂y
= ∂

∂Y
,

∂

∂t
= ∂

∂T̃
− ∂h
∂t

∂

∂Z
,

∂h

∂x
(x, t) = ∂

∂X
h(X, T̃ ),

∂h

∂t
(x, t) = ∂

∂T̃
h(X, T̃ ). (6.9)

In this new coordinate system the body of the fish, when it is swimming, is described by

F(X, Y,Z) = 0, (6.10)

which is independent of the time T̃ .
In the new coordinates the three-dimensional potential equation for the velocity potential

becomes
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∂

∂X
− ∂h

∂X

∂

∂Z

) (
∂ϕ

∂X
− ∂h

∂X

∂ϕ

∂Z

)
+ ∂2ϕ

∂Y 2
+ ∂2ϕ

∂Z2
= 0, (6.11)

where ϕ = ϕ(X, Y,Z, T̃ ). Because quantities change gradually in the x-direction, differen-
tiations with respect to x are small in slender-body theory, whence (6.11) can be reduced
to

∂2ϕ

∂Y 2
+ ∂2ϕ

∂Z2
= 0. (6.12)

The boundary condition for the velocity potential becomes

dF

dt
(x, y, z − h(x, t)) = ∂F

∂t
+ ∂ϕ
∂x

∂F

∂x
+ ∂ϕ
∂y

∂F

∂y
+ ∂ϕ
∂z

∂F

∂z
=

= − ∂h
∂T̃

∂F

∂z
+

(
∂ϕ

∂X
− ∂h

∂X

∂ϕ

∂Z

)(
∂F

∂X
− ∂h

∂X

∂F

∂Z

)
+ ∂ϕ

∂Y

∂F

∂Y
+ ∂ϕ

∂Z

∂F

∂Z
= 0,

(6.13)

(X, Y,Z) ∈ F(X, Y,Z) = 0, ∀T̃ . (6.14)

After this key transformation, the slender-body theory is developed in a, be it complicated
but, straightforward way by neglecting quantities that are relatively small. For this we refer to
the paper under consideration [6].

However, in this exact theory, besides the transformation another craft is demonstrated by
Lighthill that we like to describe. In order to find the thrust of the body in the X-direction,
besides other integrals, the integral over the body surface S

T2(T̃ ) =
∫∫
S

p2 dY dZ, (6.15)

has to be calculated, where p2 is the pressure around the cylinder CX with cross-section SX
which translates steadily through the fluid in theZ-direction with a constant velocity ∗V which
is the value of V (x, t) at the considered place and time. By an elegant reasoning Lighthill finds
a remarkably simple expression for (6.15).

For this purpose (6.15) for a cross-section SX at a fixed value of X and over a width δX is
considered first. This integral can be written by using the notation of Figure 7 as

−
∫
SX

p2(s) δn(s) ds, (6.16)

where s is a length parameter along SX. The kinetic energy of the fluid per unit of length of the
cylinder CX with cross section SX is 1

2
∗V 2m(X), where, as before, m(X) is the virtual mass

per unit of length of CX.
If, during the translation with constant velocity ∗V , the cylinder CX undergoes gradually a

small change of cross-section from SX to SX+δX, then the fluid momentum will change by the
amount

∗V δm(X) = ∗V
dm

dX
δX. (6.17)
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Figure 7. The cross sections SX and SX+δX , the length parameter s along SX and δn(s).

To bring about this change of momentum, the translating and expanding CX must do work
per unit of its length, which can be calculated as follows. Because ∗V is constant, the force in
the direction of translation needed to change the momentum is d(∗Vm)/dt = ∗V dm/dt and,
hence, the power needed is ∗V 2 dm/dt . Thus, the work carried out by this force per unit of
length of CX, becomes

∗V 2
∫

dm

dt
dt = ∗V 2δm(X). (6.18)

During this motion the outward-moving elements of area of the varying CX also do work
against the pressure p2. Hence, per unit of length of CX, the surface of CX has to do an
amount of work that can be written as minus the integral (6.16) that we want to calculate,
because δn(s) is in the direction of the increase of SX towards SX+δX.

The change of the kinetic energy is 1
2

∗
V 2δm(X), which has to be equal to the total work

exerted on the fluid. Hence by (6.18) and (6.16)

1

2
∗V 2δm(X) =∗V 2δm(X)+

∫
SX

p2(s)δn(s) ds (6.19)

from which follows (6.16). Then, for (6.15) we still have to carry out an integration with
respect to X,

T2(T̃ ) = 1

2

∫ l

0
V 2(X, T̃ )

dm(X)

dX
dX, (6.20)

where now we have replaced ∗V by its time-dependent original V (X, T̃ ). So by this peculiar
reasoning T2(T̃ ) (6.15) can be determined without a knowledge of the special shape of SX(X);
only its virtual mass is of importance.

Further Lighthill discusses the so-called recoil conditions. By (6.3) and (6.6) it is possible
to calculate the forces acting on the body of the fish when its lateral motion z = h(x, t)

is prescribed. Then, it is clear that, by these forces on its body, the fish will move, when it
is left free in space, in a way that is most probably different from this prescribed motion.
However, the calculated forces are then incorrect, unless these forces satisfy the mentioned
recoil conditions. These are:

(i) The resultant of the lateral forces exerted by the fluid on the body has to be equal to the
rate of change of momentum in the z-direction of the body.

(ii) The resultant of the moment, for instance around the y-axis, of the lateral forces has to
be equal to the rate of change of the angular momentum of the body around the y-axis.
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Figure 8. Swimming movements with good efficiency, suggested by Lighthill [6].

When S(x) denotes the area of a cross-section Sx of the body and we assume that the
density of the fish is approximately equal to the density ρ of water, these two conditions can
be formulated as

ρ

∫ l

0

(
1
x

)
S(x)

∂2h

∂t2
dx = −

∫ l

0

(
1
x

) (
∂

∂t
+ U ∂

∂x

){
m(x)

(
∂h

∂t
+ U ∂h

∂x

)}
dx, ∀t, (6.21)

where in ( 1
x
), 1 has to be taken for condition (i) and x for condition (ii).

With respect to the time-dependent thrust, an analogous recoil condition in the x-direction
is not needed, because the mass of the fish is O(ε2), while the time-dependent thrust is only
O(ε3).

In fact, the conditions (i) and (ii) put a constraint on the choice of h(x, t) that is very
difficult to be satisfied in advance. In general, those conditions are taken into account only
approximately by an a priori inspection of h(x, t); see below.

The hydrodynamic efficiency becomes

η = UT /P , (6.22)

where T and P are given in (6.6) and (6.4), respectively. Lighthill argues that a good efficiency
is obtained when a travelling wave h(x, t) = g(x) cos ω(t−x/c) travels down the body of the
fish with an amplitude g(x) that increases towards the tail and a velocity c that is somewhat
larger than the swimming velocity U . Possibly this has a relation with the idealized travelling
wave introduced below (3.1) which increased the efficiency of the swimming motion there.

Combining several aspects, Lighthill arrives at the conclusion that the carangiform of
swimming, that is with a rather stiff front part of the body and with the tail part having a
positive and a negative phase, so that the moments (condition (ii)) produced by each of them
tend to cancel out, will yield a good efficiency. He suggests a cycle of movements as shown
in Figure 8.

This theory of Lighthill was extended by R. Coene in his ‘Notes on the efficiency of propul-
sion of bodies in waves’ [13], who applies some of the ideas of Lighthill, for instance the
coordinate transformation (6.8), to a slender aquatic animal with a horizontal tail swimming
under surface waves. The depth of swimming is such that the disturbance of the water surface
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Figure 9. (a)Flow around strip Cl, |y| ≤ s
2 , z = 0; (b) strength of vorticity γx(l, y, t) on strip Cl .

can be neglected; however, energy can be extracted from the velocity field induced by the
waves whose crests are perpendicular to the direction of swimming.

7. On vorticity shedding by fins in slender-body theory

In his article ‘Aquatic animal propulsion of high hydrodynamical efficiency’ [14], Lighthill
continues among other things the subject of the previous section by studying the vorticity
shed by fins and its influence on the swimming of a slender fish.

The simplest case, which we already mentioned briefly, is when the fish has only a caudal
fin of which the trailing edge is straight and vertical, |y| ≤ 1

2s; Figure 9a. Then, in slender-
body theory the cylinder Cl introduced above (6.1) belonging to the trailing edge at x = l

(Figure 6) with the nose of the fish at the origin, is a two-sided infinitely long flat strip of
width s. In order to find the two-dimensional approximation of the flow at the trailing edge,
this strip has to be translated in a direction perpendicular to itself with the velocity

V (l, t) =
{
∂h

∂t
(x, t) + U ∂h

∂x
(x, t)

}∣∣∣∣
x=l
, (7.1)

where z = h(x, t) is again the lateral motion of the fish body. The two-dimensional flow
and the vorticity component γx(l, y, t) in the x-direction needed to prevent the fluid passing
through Cl are drawn in Figures 9a and 9b, respectively, where

γx(l, y, t) = −2V (l, t)
y

(
s2

4
− y2)1/2

, |y| ≤ s

2
, z = 0, (7.2)

which belongs to an elliptic lift distribution along the trailing edge of the tail.
This vorticity is left behind when the fish moves on by swimming with the velocity U . It

is clearly an approximation of the ‘real’ shed vorticity, caused by the character of the slender-
body theory, namely there is no γy component which is needed to make the vorticity field free
of divergence, because V (l, t) changes with time.

Now we consider the influence of free vorticity shed by fins on downstream parts of the
body of the swimming fish. First, we follow Lighthill’s discussion of the vorticity shed by a
dorsal fin with a straight trailing edge towards an other at a short downstream distance from
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Figure 10. (a) Fish with two closely spaced dorsal fins I and II with vertical trailing edges; (b) two-dimensional
flow around cylinder Ca1 which has the cross-section Sa1 of the body of the fish at x = a1.

the first one; Figure 10a. The foremost fin I with trailing edge at x = a1, sheds free vorticity
analogously to the shedding of the vorticity by the caudal fin. Now, however, the lower part
of the cylinder Ca1 has an oval shape and this causes the vorticity γx at the trailing edge of the
protruding fin to be different from (7.2). Because the vorticity γx in the neighbourhood of the
trailing edge of fin I induces there the velocity V (a1, t), it will continue to do so when it has
left fin I and is in between fin I and fin II. In slender-body-theory changes in the x-direction
are gradual, hence the velocity in the z-direction of the body at the place of the nearby fin II
will not differ much from the lateral velocity of fin I. This means that the gap in between fin I
and fin II, filled with the shed vorticity, behaves nearly as if fin I and fin II were connected
by an intermediate material sheet. From this Lighthill concludes that closely spaced fins have
nearly the same influence on the swimming as one continuous fin, but since the speed of the
travelling body wave is somewhat larger than the swimming velocity, there is a slight phase
difference between the motions of fin I and fin II.

Second, we consider the vorticity shed by fin II, which can travel over larger distances
in the x-direction; hence we have to take into account that at place x, with x really larger
then a2, the momentary free vorticity at that location is shed by fin II at the previous time
(t − (x − a2)/U) and will be proportional to

V

(
a2, t − (x − a2)

U

)
. (7.3)

The free vorticity γ (1)x (x = a2, y) as a function of y, for a transverse velocity in the z-direction
of magnitude 1, can be calculated from the shape of the cross-section Sa2 of the cylinder Ca2.
This means that the free vorticity γx(x, y, t) for x > a2 at the dorsal side of the body becomes

γx(x, y, t) = V (a2, t − (x − a2)

U
) · γ (1)(a2, y), (7.4)

where, for instance, it is assumed that this vorticity lies straight behind fin II.
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It is not clear where Lighthill chose the shed vorticity with respect to the body of the fish.
Does the vorticity remain in a flat strip straight behind fin II or does it in some sense follow
the streamlines caused by the body? However, this is not important for the following analysis,
as long as the free vorticity remains almost in the x, y plane. We return to this subject in the
final paragraph of this section.

As before Lighthill denotes by m(x) the virtual mass per unit of length in the z-direction
of the cylinder Cx with cross-section Sx of the body of the fish in the absence of the shed
vorticity (7.4). For the one-valued velocity potential ϕ(x, y, z, t) of the two-dimensional flow
induced by Cx there are the boundary conditions (7.1):

∂ϕ

∂n
= V (x, t)nz on Cx, ϕ = 0 on z = 0 outside Cx, (7.5)

where nz is the z-component of the unit normal on Cx and it is assumed that the fish at rest is
symmetrical with respect to the plane z = 0.

The one-valued function ϕ̃(x, y, z, t) denotes the velocity potential of the flow belonging
to the known vortex sheet (7.4) and the cylinder Cx at rest. This two-dimensional flow satisfies
the boundary conditions

∂ϕ̃

∂n
= 0 on Cx and a known jump of ϕ̃ across the vortex sheet. (7.6)

By introducing m̃(x) we can write the momentum of this flow in the z-direction as
m̃(x) · V (a2, t − (x − a2)/U).

The velocity potential of the total flow induced by the transverse motion of Cx in the
presence of the vortex sheet is (ϕ + ϕ̃) and its momentum in the z-direction becomes

m(x)V (x, t) + m̃(x)V
(
a2, t − (x − a2)

U

)
, x > a2. (7.7)

Lighthill states that the two flows belonging to ϕ and ϕ̃ are orthogonal in a function space
with the kinetic energy as norm. This means by definition that it has to be proved that for the
integral I we have the orthogonality relation

I
def=

∫∫ (
∂ϕ

∂y
,
∂ϕ

∂z

) (
∂ϕ̃

∂y
,
∂ϕ̃

∂z

)
dy dz = 0. (7.8)

Because the flows belonging to ϕ and ϕ̃ are divergenceless, we can write

I =
∫∫

div(ϕ grad ϕ̃) dy dz =
∮
ϕ
∂ϕ̃

∂n
ds, (7.9)

where ds is an element of length and the contour integral is tightly around Cx and the vortex
sheet. Also, a contour integral along a circle with large radius R has to be considered; however,
this integral tends to zero for R → ∞. It follows from (7.5) and (7.6) that I = 0. Thus, we
have the equality∫∫ (

∂ϕ

∂y
+ ∂ϕ̃
∂y

)2

+
(
∂ϕ

∂z
+ ∂ϕ̃
∂z

)2

dy dz =
∫∫ [{(

∂ϕ

∂y

)2

+
(
∂ϕ

∂z

)2
}

+

+
{(
∂ϕ̃

∂y

)2

+
(
∂ϕ̃

∂z

)2
}]

dy dz

(7.10)
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Figure 11. Tail hit by free shed vorticity sheet of width (A − C), (a) real configuration, (b) two-dimensional
slender-body approximation.

and for the kinetic energy E(x, t) per unit of length of the flow which belongs to ϕ + ϕ̃ we
find

E(x, t) = 1
2m(x)V

2(x, t) + 1
2m̃(x)V

2

(
a2, t − (x − a2)

U

)
. (7.11)

We now return to (7.7) by which the side force L(x, t) per unit of length can, instead of
(6.3), be written as

L(x, t) =
(
∂

∂t
+ U ∂

∂x

) {
m(x)V (x, t)+ m̃(x)V

(
a2, t − (x − a2)

U

)}
=

=
(
∂

∂t
+ U ∂

∂x

)
{m(x)V (x, t)} + Um̃′(x)V

(
a2, t − (x − a2)

U

)
.

(7.12)

Because (7.7), which denotes the momentum of the fluid in the z-direction, is continuous at
x = a2, it follows that neither a Dirac δ-function of m̃′(x) nor one of m′(x) has to be taken at
x = a2 because they annihilate one another.

Here it is perhaps of interest to consider more explicitly the flat tail region upstream of the
trailing edge of the tail. For a given x on the flat tail (Figure 11) part (B −C) of the incoming
free vortex sheet of width (A−C) passes closely along the tail plate, while the part (A−B) is
above the tail plate. Following Lighthill the part (B − C), which is mixed with the boundary
layer of the tail, has no influence, or otherwise by its mirrored image in the tail plate it cannot
induce velocities. The part (A−B) of the free shed vorticity can be treated as before; however,
instead of an oval body with thickness, the flat tail plate has to be taken.

When the caudal fin protrudes out of the incoming free vorticity, it follows from the fore-
going that there is no influence of the incoming free vorticity sheet on the shedding of vorticity
by the vertical trailing edge of the caudal fin. This shedding of vorticity remains the same as
in Figure 9.

Now analogous to what was done in the first part of Section 6 up to and including (6.6),
it is possible to give two representations of the energy put into the fluid by the fish. In one of
these the propulsive force caused by the motions of the fish appears. Invoking the principle
of conservation of energy, we can compare these two representations from which follows the
propulsive force in the case of free vorticity shed by the fins.

Thus far there is one point in the analysis that deserves some thought. This concerns the
orders of magnitude of the lateral dimensions of the body and its lateral movement h(x, t).
When these quantities have the same order of magnitude, it is doubful that the analysis of the
orthogonality of the two flows belonging to the velocity potentials ϕ and ϕ̃ (7.8) is valid. Then
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Figure 12. Spinal column of fish with length coordinate a, plane ? ⊥ plane y = 0 and ⊥ end of spinal column,
velocity components u(a, t) and w(a, t) of points of spinal column, u(a, t) tangential, w(a, t) perpendicular to
spine, both in plane y = 0.

it is possible that the vortex layer shed by the dorsal fin II in Figure 10 is not ‘near’ the plane
z = 0. However, it can be above, beside the midplane of the body cross-section at a distance
equal to the height or the width of the body cross-section, so that (7.5) cannot be used for the
proof of the orthogonality property. Also, the vortex sheet under consideration can pass the
tail at a distance which, for instance, is equal to the length of the trailing edge. In that case a
complicated flow occurs that cannot be discussed by the given theory.

However, when we assume that the lateral motion y = h(x, t) = O(ε̃) with ε̃ 	 ε, then
(7.8) will be approximately correct and also the given theory. We will return to this topic in
the third paragraph below (10.19).

8. Large-amplitude elongated-body theory

We now consider a second extension of the slender-body theory of Section 6 which is with
respect to the amplitude of the motion of the swimming body. This extension was given by
Lighthill in his article ‘Large amplitude elongated-body theory of fish locomotion’ [11] men-
tioned above. Such an extension is of interest because the theory of Section 6 assumes that all
lateral displacements and velocities are small, while in reality the lateral velocity component
of the caudal fin can in certain circumstances reach values of twice the swimming velocity of
the fish.

This theory is in terms of a coordinate system (x, y, z) which is at rest with respect to the
undisturbed fluid at large distances of the fish. The fish moves in the neighbourhood of the
plane y = 0; Figure 12. The fluid space is divided into two half spaces by a plane ? that is
parallel to the y-axis, passes through the vertical trailing edge of the tail and is perpendicular
to the end part of the tail. The half space in which the fish is present is denoted by K and the
wake is assumed to remain outside K.

The spinal column is supposed to be inextensible, having a length coordinate a along it,
where a = 0 at the tail and a = l at the nose of the fish. When the spine has the representation
(x(a, t), y = 0, z(a, t)), the inextensibility relation has the form(

∂x

∂a

)2

+
(
∂z

∂a

)2

= 1. (8.1)
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The velocity components of the points of the spine in the tangential and the normal directions
are

u(a, t) = ∂x

∂t

∂x

∂a
+ ∂z
∂t

∂z

∂a
, w(a, t) = ∂z

∂t

∂x

∂a
− ∂x
∂t

∂z

∂a
, (8.2)

respectively, reckoned positive as shown in Figure 12. Then, with respect to the (x, z) coor-
dinate system, the components of the local momentum in the neighbourhood of the fish are
given by

m(a, t)w(a, t)

(
− ∂z
∂a
,
∂x

∂a

)
, (8.3)

wherem(a, t) is the virtual mass per unit of length of the cross-section of the fish at a. Lighthill
assumes that m(a, t) depends also on time, which is important for fish with a caudal fin with
the length of its trailing edge changing during a swimming cycle. The way in which m(a, t)
has to be defined is possibly still open for discussion. The reason is that the deforming body
has no ‘self-evident’ velocity, which in the general case makes the time-dependent virtual
mass a concept that has to be used with care.

Now the theory considers the rate of change of momentum within the half spaceK bounded
by the plane ?. The momentum follows approximately from (8.3) by an integration over
0 ≤ a ≤ l. The rate of change is then obtained by a differentiation of the result with respect
to time and, quoting Lighthill, has to be equal to the sum of the following three quantities :

(i) The rate of change of momentum due to convection out of K across the plane ?;
(ii) The rate of change of momentum due to the pressure force acting across the plane ?;
(iii) Minus the reaction force (T ,L) with which the fluid acts on the fish.
This results in the equation

d

dt

∫ l

0
mw ·

(
− ∂z
∂a
,
∂x

∂a

)
da=

[
−u · (mw)

(
− ∂z
∂a
,
∂x

∂a

)
+ 1

2mw
2 ·

(
∂x

∂a
,
∂z

∂a

)]∣∣∣∣
a=0

− (T , L).
(8.4)

Lighthill argues that the only flux of momentum through the plane ? follows from the trans-
lation of ? with the velocity component u(0, t), which is normal to ?. This is per second the
amount u · (mw) in the direction of the unit normal on the tail (−∂z/∂a, ∂x/∂a) which yields
the first term at the right-hand side of (8.4). The second term is caused by the pressures acting
at K across ? of which a clear derivation is given by Childress in his book ‘Mechanics of
swimming and flying’ [15].

Rewriting the expression between square brackets in (8.4) as

mw

{
−u ·

(
− ∂z
∂a
,
∂x

∂a

)
+ w ·

(
∂x

∂a
,
∂z

∂a

)}
− 1

2mw
2 ·

(
∂x

∂a
,
∂z

∂a

)
(8.5)

and using (8.1) and (8.2), we find that (8.4) can be written as

(T , L) =
{
mw ·

(
∂z

∂t
,−∂x
∂t

)
− 1

2mw
2 ·

(
∂x

∂a
,
∂z

∂a

)}∣∣∣∣
a=0

− d

dt

∫ l

0
mw ·

(
− ∂z
∂a
,
∂x

∂a

)
da.
(8.6)

Because the last term in (8.6) is periodic with respect to time, the mean thrust T , when the
fish swims in the x-direction, becomes
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Figure 13. Cod used as test fish in swimming-power measurements. During fast swimming the dotted fins have
collapsed against the body. From Wardle and Reid [16].

T =
{
mw ·

(
∂z

∂t
− 1

2w
∂x

∂a

)}∣∣∣∣∣
a=0

, (8.7)

which is a rather simple result for a complicated problem.
Up to now the recoil conditions did not enter into the discussion. These conditions are re-

lated to the time-dependent side force L acting on the fish, which follows from (8.6). Lighthill
discusses that recoil motions will be relatively small when the fish has a good height of the
front part of its body and has a substantial reduction of the height in front of the tail.

An estimate is given of the kinetic energy left behind in the wake. The kinetic energy in this
theory per unit of length in the neighbourhood of the trailing edge of the tail is ( 1

2mw
2)|a=0.

Because the tangential velocity of the trailing edge is u(0, t), an estimate of the mean kinetic
energy E leaving the tail per second and shed into the fluid behind the fish, becomes

E = ( 1
2mw

2u)

∣∣∣
a=0
. (8.8)

In ‘The application of large amplitude elongated-body theory to measure swimming power
in fish’ [16] Wardle and Reid used this theory to arrive at an estimate of the swimming power
of fish. For their experiments they used a cod (Figure 13) of length 73·4 cm and weight 3·2 kg,
swimming at a speed of about 3 m/s with its median fins folded . We quote their appraisal
of the results: ‘The direct application of the reactive theory to measure swimming power in
fish appears to give results that are in agreement with both biochemical assessment of power
available and estimates based on drag to be overcome by swimming’.

9. Balistiform locomotion

In the article ‘Biofluid dynamics of balistiform and gymnotiform locomotion, Part I. Biolog-
ical background and analysis by elongated-body theory’ by Lighthill and Blake [17] several
aspects of the balistiform swimming of fish are considered; in this section we will discuss
some of these.

As we mentioned briefly in the Introduction, the balistiform kind of locomotion is caused
by undulations propagated along flexible dorsal and anal fins, while the body and the tail fin
are rigid and remain straight; Figure 14. For the calculation of the propulsive force F Lighthill
and Blake use, as in the elongated-body theory of Section 8, a vertical plane ? separating the
half space K in which the propulsive fins are active from the half space in which the wake
is present. In the case of balistiform locomotion the plane ? is placed at the posterior end of
the propulsive apparatus formed by the dorsal and anal fins, so that the rigid caudal fin is in
the half space of the wake. Further, it is demanded that the plane ? is such that the local fluid
momentum vector M, occurring at the posterior end of the propulsive fins, lies in?. Then, in
general, ? will be in an oblique position with respect to the backbone.
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Figure 14. Fish with balistiform locomotion, Oxymonacanthus longirostris, - - - - - - - cross-section used in
Figure 15. Based on Lighthill and Blake [17].

Along the fish a length parameter a has been defined with a = 0 at ? and a = l at the
anterior end of the propulsive fins. Then again the following balance of momentum is valid
for the half space K

d

dt

∫ l

0
M da = −F + P − U(M)

∣∣∣∣
a=0

, (9.1)

where at the left-hand side the rate of change of momentum in K is given, and at the right-
hand side F is the propulsive force, P is the pressure force across the plane ?, (M)|a=0 is the
local momentum per unit of length caused by the motion of the fins and U is the swimming
velocity of the fish. In a periodic motion the mean value with respect to time of the left-hand
side of (9.1) is zero, hence for the mean values with respect to time of the other quantities the
following holds

F = −U(M)
∣∣∣
a=0

+ P. (9.2)

Lighthill and Blake proceed by describing a simple mathematical model from which it
can be understood why this form of propulsion has the capacity of providing relatively high
speeds, although the body and the tail fin remain rigid and in one plane. In this model the body
is, for the sake of simplicity, assumed to have no thickness and to be flat. A cross-section of
the body is considered, see dashed line in Figure 14, which cuts the dorsal fin and the anal fin.
The height of the body is 2s and each fin has a width (l − s). The flow caused by the motion
of the two fins is assumed to be two-dimensional. The situation of Figure 15a is considered,
which can be generalized to the problem of Figure 16 for the calculation of the momentum
M in the y-direction per unit of length, when the velocity of the flexible plate is vy = f (x).
Hence, the velocity potential ϕ(x, y), which satisfies the two-dimensional Laplace equation,
satisfies the boundary condition

∂ϕ

∂y
= f (x), −l < x < l, (9.3)

while the circulation around the plate has to be taken equal to zero.
In the first instance we treat this problem differently from [17] in order to avoid an integral

in the (x, y)-plane for the momentum in the y-direction that is not absolutely convergent.
Instead of the time-independent problem we consider a time-dependent problem with vy =
0 for t < 0 and with vy = f (x) for t ≥ 0. We introduce the time-dependent potential
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Figure 15. Cross-section of fish; see dashed line Figure 14; one cycle of the motion of the fins; ω is radian
rotational velocity of fins. Based on Lighthill and Blake [17].
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Figure 16. The two-dimensional flow with vy = f (x),−l ≤ x ≤ l, y = 0.

ϕ̃(x, y, t) = ϕ(x, y)H(t), where H(t) is the step function H(t) = 0 for t < 0 and H(t) = 1
for t ≥ 0. The pressure in the fluid follows from the unsteady Bernoulli equation:

p(x, y, t) = −ρ ∂ϕ̃
∂t

− 1
2ρ

{(
∂ϕ̃

∂x

)2

+
(
∂ϕ̃

∂y

)2
}
. (9.4)

Because (∂ϕ̃/∂x)2 and (∂ϕ̃/∂y)2 are symmetric with respect to y, we find for the pressure
jump over the plate

[p]+− = (p+ − p−) = −ρ{ϕ+(x, 0)δ(t) − ϕ−(x, 0)δ(t)} = −2ρϕ+(x, 0)δ(t), (9.5)

where δ(t) is the Dirac delta function. Hence, the resultant force L(t) in the y-direction to be
exerted on the fluid at the plate has the value

L(t) = −2ρδ(t)
∫ l

−l
ϕ+(x, 0) dx. (9.6)

Then the momentumM of the fluid in the y-direction for t = +0 becomes

M =
∫ ε

−ε
L(t) dt = −2ρ

∫ l

−l
ϕ+(x, 0) dx = ρ

∮ l

−l
ϕ(x, 0) dx, (9.7)

where the contour integration is around the plate in an anti-clockwise direction. This is the
same result as in [17, Formula 6], which we follow again henceforth.

Lighthill and Blake reduce expression (9.7) to an attractively simple form. Consider the
potential ϕ1(x, y) for f (x) = 1, hence with ∂ϕ1(x, 0)/∂y = 1 for −l ≤ x ≤ l. Then, instead
of (9.7), we can write
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M = ρ
∮
ϕ(x, 0)

∂ϕ1

∂y
(x, 0) dx = ρ

∮
ϕ1(x, 0)

(
∂

∂y
ϕ(x, y)

)∣∣∣∣
y=0

dx, (9.8)

where Green’s theorem is used in the second equality. The limit values of ϕ1(x, y) for y → 0
can be calculated easily, for instance by means of a solvable singular integral equation; they
are

ϕ1(x,±0) = ∓(l2 − x2)1/2. (9.9)

The announced simple form of (9.8) now becomes

M = 2ρ
∫ l

−l
(l2 − x2)1/2f (x) dx. (9.10)

The function f (x) for the case of Figure 15a is

f (x) = 0, |x| < s; f (x) = ω · (|x| − s), s ≤ |x| ≤ l. (9.11)

where ω is the angular velocity of the fins. Then by (9.10) the momentumM becomes

M = 2ρω{ 1
3(l

2 − s2)1/2(2l2 + s2)− sl2 cos−1(s/ l)}. (9.12)

Formula (9.10) can also be used for the calculation of the momentum 1
2M0 in the y-

direction by one fin of length (l − s), whence we find for the two fins without the body in
between and no other interaction

M0 = π

4
ρω(l − s)3. (9.13)

Hence, by the presence of the body for |x| ≤ s and the nearness of the fins, there is
an amplification of the induced momentum in the y-direction by a factor β = M/M0. This
factor β is drawn in Figure 17 and is called by Lighthill and Blake the main result of their
paper. It shows that the two fins attached to the flat rigid body can generate considerably more
momentum than two fins ‘free in space’ without interaction.

This is, of course, not a useful model for balistiform locomotion, because the two fins
drawn in Figure 15 induce two-dimensional momentum in the lateral y-direction without a
propulsive component in the posterior direction of the fish. This can be changed by recogniz-
ing that the real motion of the two fins is more or less undulatory, by which the normal at the
high-pressure side of a fin can have a component in the posterior direction of the fish. Then a
thrust component can arise.

Lighthill and Blake enter deeply into the propulsive consequences of the foregoing and
give expressions for the quantities M and P occuring in (9.2) by which the mean propulsive
force can be determined. For this we refer to their paper.

In three subsequent papers [18] Lighthill elaborates the problem further and discusses the
presence of a body with elliptical cross-section and the effect of short-wavelength undulations
of the fins. In the latter case the two-dimensional theory no longer holds for the calculation
of the enhancement factor β of Figure 17. This factor will be reduced because neighbouring
opposite amplitudes at the dorsal or the anal fin will hinder each other in inducing a large
momentum in the lateral direction. Lighthill discusses that in this case it is better not to use
the two-dimensional Laplace equation but rather

∂2ϕ

∂x2
+ ∂

2ϕ

∂y2
− k2ϕ = 0, (9.14)
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Figure 17. The momentum enhancement factor β. From Lighthill and Blake [17].

where k = 2π/λ and λ is the wavelength of the undular motion of the fins.

10. More about vorticity shedding in slender-body theory

After discussing in the preceding four sections mainly the pioneering work of Lighthill on
the swimming of fish, we will discuss in the next two sections some of the profound work
of T.Y. Wu. After his early paper [7] of 1961, Wu published in 1971 ‘Hydromechanics of
swimming propulsion’ [19] of which we consider here ‘Part 3. Swimming movements of
slender fish with side fins’.

In that paper the fish is assumed to have zero thickness and the mathematics shows an
interesting application of the theory of complex functions. However, among other things,
we will discuss that, for the region where the tail is struck by shed vorticity, the analysis
is not valid. This was remarked by Wu and Newman in their subsequent paper ‘Unsteady flow
around a slender fish-like body’ [20] where they give a solution of the more general problem
of a slender fish with thickness.

Notwithstanding the mentioned shortcoming, the theory developed in [19, Part 3] is eluci-
dating, because its subject can be formulated in a nice and simple manner and is solved partly
explicitly in an elegant way. So we consider the fundamental Section 2 of that paper.

As mentioned before, the fish is assumed to have zero thickness, its planform Sb (x, y)
is part of the (x, y)-plane, the upper and lower boundaries of Sb are y = b(x) ≥ 0 and
y = −b(x) ≤ 0, respectively. The nose of the fish is at x = −ln, at x = 0 we have b′(x) = 0,
the tail base neck is at x = 1 and the vertical trailing edge of the tail is at x = l. The lateral
motion of the body is z = h(x, t) = O(ε). The velocity of the incoming fluid in the positive
x-direction is U and the perturbation velocity field is (u, v,w).

The sharp leading edges of the ‘body’ Sb of the fish (including the tail) for −ln < x < 0
and for 1 < x < l will have a square-root singularity of the pressure, while at the trailing
edges of Sb for 0 < x < 1 and at x = l, the Kutta condition for smooth flow will be imposed.
At these trailing edges, free vorticity is shed into the fluid, which is transported with velocity
U in the positive x-direction.

The velocity potential ϕ(x, y, z, t) of the perturbation velocities (grad ϕ = (u, v,w))

satisfies the three-dimensional Laplace equation; however, in concurrence with slender-body
theory it is again assumed that ϕ has to satisfy only the two-dimensional Laplace equation
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Figure 18. Fish body Sb in the neighbourhood of the (x, y) plane.

∂2ϕ

∂y2
+ ∂

2ϕ

∂z2
= 0. (10.1)

Therefore the complex potential f (ζ ; x, t) = ϕ + iψ can be introduced and df/dζ = v − iw
where ζ = y+ iz and ψ(x, y, z, t) is the stream function which is conjugated to ϕ, (∂ϕ/∂y =
∂ψ/∂z, ∂ϕ/∂z = −∂ψ/∂y).

Wu also introduces the acceleration potential E = −p/ρ where p is the pressure, which
we assume here to be zero at infinity. By using the equation of motion

∂u

∂t
+ U ∂u

∂x
= ∂E

∂x
, (10.2)

and putting u = ∂ϕ/∂x, we obtain by integration of this equation with respect to x from
x = −∞ (where ϕ = 0) to x:

E =
(
∂

∂t
+ U ∂

∂x

)
ϕ = Dϕ, D =

(
∂

∂t
+ U ∂

∂x

)
. (10.3)

Hence E is also harmonic with respect to y and z and has a conjugated function F. The func-
tions f (ζ ; x, t) and F(ζ ; x, t) = E(x, y, z, t)+ iF(x, y, z, t) are then sectionally holomorfic
functions of ζ ; the line segments on which they have discontinuities will become clear in the
course of the analysis.

It follows from (10.3) that

F(ζ ; x, t) = Df (ζ ; x, t) → dF

dζ
= D

df

dζ
= D(v − iw) = D
(ζ ; x, t), (10.4)

where 
 = v − iw is introduced.
First the front part −ln < x < 0 of the body SB is considered. The complex velocity 


satisfies at SB the boundary condition (see (6.1)) for a fixed value of x

Im 
(ζ ; x, t)= −w= −
(
∂

∂t
+U ∂

∂x

)
h(x, t)= −V (x, t), −ln < x < 0, |y|<b(x), z= 0.

(10.5)

Hence, because v(x, y, z, t) = −v(x, y,−z, t), we can formulate for 
 the Hilbert problem
in the complex ζ = y + iz plane for fixed x
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+ +
− = −2iV (x, t); −ln < x < 0, |y| < b(x), z = 0, (10.6)

where 
+(
−) means the limit of 
 for z→ 0 at the S+
b (S

−
b ) side of Sb (Figure 18).

This Hilbert problem can be solved explicitly by the method given by Muskhelishvily in
‘Singular integral equations’ [21, p.227 and further]. It is found that the solution with the
desired singularity at the leading edge y = ±b(x),−ln < x < 0, that vanishes at ζ = ∞
becomes


(ζ ; x, t) = df

dζ
(ζ ; x, t) = iV (x, t)[ζ {ζ 2 − b2(x)}−1/2 − 1], −ln < x < 0, (10.7)

where the branch of the square root is determined by choosing for the root a positive real value
for y > b(x) and z = 0. The complex velocity potential f (ζ ) follows from an integration of
(10.7)

f (ζ ; x, t) = ϕ + iψ = iV (x, t)[{ζ 2 − b2(x)}1/2 − ζ ] → F(ζ ; x, t) = Df (ζ ; x, t),
0 < x < 1, (10.8)

where in the last equality (10.4) has been used.
Next the region 0 < x < 1 of Sb is considered which has the trailing edges y = ±b(x)

where the Kutta condition has to be satisfied. Here Wu makes the crucial choice to start
not with 
 but with dF(ζ ; x, t)/dζ , which by (10.4) and (10.5) must satisfy the boundary
condition for fixed x

Im
dF

dζ
(ζ ; x, t) = −Dw(x, y, 0, t) = −DV (x, t), 0 < x < 1, |y| < b(x), z = 0.

(10.9)

Hence, for dF/dζ , by the anti-symmetry of v with respect to y and by the continuity of w, the
following holds:(

dF

dζ

)+
+

(
dF

dζ

)−
= −2iDV (t); 0 < x < 1, |y| < b(x), z = 0. (10.10)

Further we have(
dF

dζ

)+
−

(
dF

dζ

)−
= D{(v+ − v−)− i(w+ − w−)} = 2Dv+ = 0, b(x) < y < b(0),

z = 0, (10.11)

where in the last equality we have used that the free vorticity has to be transported by the
incoming parallel flow of velocity U . From this it is found that dF/dζ is analytic with the
exception of (|y| < b(x), z = 0) and we obtain for dF/dζ the Hilbert problem (10.10). In
agreement with (10.6), (10.7) and (10.8) the following F(ζ ) arises

F(ζ ; x, t) = i(DV (x, t))[{ζ 2 − b2(x)}1/2 − ζ ], 0 < x < 1, (10.12)

which is a continuous continuation at x = 0 of the F(ζ ; x, t) given in (10.8) when db(x)/dx =
0 for x = 0, as is assumed in Figure 18.

Then, f (ζ ; x, t) can be obtained as the solution of the first equality of (10.4); after some
manipulations it is found that
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f (ζ ; x, t) = iV
(

0, t − x

U

)
{ζ 2 − b2(0)}1/2 − iV (x, t)ζ + i

∫ x

0
{ζ 2 − b2(ξ)}1/2·

∂

∂ξ
V

(
ξ, t + (ξ − x)

U

)
dξ. (10.13)

From this f (ζ ; x, t) it can be checked that the normal component of the velocity at the body
of the fish for 0 < x < 1 is equal to V (x, t), that the x-component of vorticity γx = −2v+ at
the body at y = b(x) is continued in the wake and that this vorticity in the wake is transported
in the x-direction with velocity U .

For the tail region 1 < x < l of the body of the fish the following representation of the
complex velocity potential f (ζ ; x, t) is chosen in [19]

f (ζ ; x, t) = iV (x, t)[{ζ 2 − b2(x)}1/2 − ζ ] + g(ζ ; x − Ut), (10.14)

where g(ζ ; x−Ut) is still an arbitrary function of its two arguments. However, this represen-
tation is not sufficiently general. It yields a contradiction when we suppose, for instance, that
h(x, t) = 0 for 1 < x < l by which f (ζ ; x, t) = g(ζ ; x − Ut). When the tail is sufficiently
wide (> b(0)) and long, the slender-body theory yields f (ζ ; x, t) = 0 for the dashed cross-
section A−A of Figure 18 and for cross-sections downstream of it. This is contrary to the fact
that g(ζ ; x − Ut) �= 0 at points for which 1 < x < l, where free shed vorticity is transported
and then g(ζ ; x − Ut) �= 0 for all downstream values of x.

That indeed wrong results are obtained when using (10.14) can be seen from Wu’s formula
(28) when, for instance, the following choice is made

h(x, t) = 1

U
(x + ln) sin (x − Ut). (10.15)

Then it is found that for a point Q(x, y) (Figure 18) on the tail with (1 < x < l, b(1) < y <
b(x)) the velocity component w normal to the tail becomes

w(x, y, t) = V (x, y, t)
{

1 + y

(y2 − b2(1))1/2

}
> 2V (x, t) (10.16)

instead of the required w = V (x, t).
Up to and including (10.13) the theory is correct within the formal framework of slender-

body theory for fish of which the body planform is convex and the theory gives a nice and
explicit solution for the perturbation velocities, pressures and so on, although the recoil con-
ditions still have to be considered.

However, the tail region 1 < x < l can be treated the way Wu and Newman did this in
their already mentioned paper [20] by means of the Riemann–Hilbert problem which we will
discuss now. For the sake of simplicity we will take the width of the tail smaller than b(0).

For the complex velocity function 
(ζ ; x, t) = v− iw we can deduce boundary conditions
along the complete real y-axis. First we have, as before,

Im 
+(ζ ; x, t) = −V (x, t), 1 < x < l, −b(x) < y < b(x), z = +0. (10.17)

For the intervals (−b(0) < y < −b(x)) and (b(x) < y < b(0)), Equation (10.13) yields
the two shed free-vorticity sheets, which we denote by γx1(x − Ut, y) and γx2(x − Ut, y),
respectively. The parts of these vorticity sheets that are at the considered cross-section x,
already alongside of the tail, are neglected; see Figure 11 and its discussion. Then the velocity
components in the y-direction, v+

1 = − 1
2γx1 and v+

2 = − 1
2γx2, are known at these intervals,

by which
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Re 
+(ζ ; x, t) = v+
1 (v

+
2 ), 1 < x < l, −b(0) < y < −b(x), (b(x) < y < b(0)),

z = +0. (10.18)

Finally, for the intervals (−∞ < y < b(0)) and (b(0) < y < ∞), the velocity component v
in the y-direction is zero because in the configuration only vorticity for −b(0) < y < b(0)
and z = 0 is present. So for these intervals we have

Re 
+(ζ ; x, t) = 0, 1 < x < l, −∞ < y < −b(0) or b(0) < y <∞, z = +0.
(10.19)

For each fixed x and t Equations (10.17), (10.18) and (10.19) form a Riemann–Hilbert
problem for the function 
(ζ ; x, t), the solution of which is explicitly given by Muskhe-
lishvily in [21, p.109–111]. It is important that the solution of the homogeneous equation
needed in the analysis is symmetric with respect to y, so that no non-zero circulation around
the tail region will occur.

In their paper ‘A generalized slender-body theory for fish-like forms’ [22] Newman and
Wu proceed by studying the interaction of a slender body with the free vorticity shed by
appended lifting surfaces or fins. Here the body has also thickness. The starting point of the
theory, which uses again complex function theory, is the method introduced by Lighthill that
was discussed in Section 6 (Equations (6.8)–(6.14)) where the time-dependent coordinate
transformation was used that transforms the moving body into a time-independent shape.

In [22] – see also the remark at the end of Section 7 – apparently two orders of magnitude
are used, namely δ for the lateral dimensions of the slender body, which are O(δ) and h for
the lateral motion h(x, t) = O(h). An approximation for the pressure in the fluid is obtained
by using in the expansion terms up to and including O(δh), while, among other things, terms
ofO(h2) are neglected. This means that the amplitude of the lateral motion h(x, t) is assumed
to be much smaller than the lateral dimensions of the slender body.

Then it is shown that, under these assumptions, the vorticity shed by the fins follows, within
the stated accuracy, the streamlines along the stretched body placed in the incoming parallel
flow with velocity U . The paper discusses, for instance, the lift force on a body with fins that
translates under a constant angle of attack.

We mention also the article ‘The force on a slender fish-like body’ [23] by Newman. The
first part of it gives a clear and classical approach to the formulation of the forces caused by
any type of swimming body which is allowed to have a large-amplitude motion and is possibly
equiped with fins. It is related to the problem discussed by Lighthill [11] (Section 8 of this
survey) and, in some sense, gives a generalization of the results.

11. Accelerated swimming of a flexible plate. Two-dimensional theory

The papers ‘Swimming of a waving plate’ [7] and ‘Hydrodynamics of swimming propulsion.
Part I. Swimming of a two-dimensional flexible plate at variable forward speeds in an inviscid
fluid’ [19] are also two fundamental papers by T.Y. Wu for the understanding of the swimming
of fish. We will discuss the second one because it is a generalization of the first and, besides
this, it uses the transparent method of the theory of sectionally holomorfic functions.

The two-dimensional theory discusses the swimming of a flexible plate of zero thickness
and infinite span in a flow with a time-dependent incoming velocity U(t). In others words,
it can describe the accelerated swimming of the plate in a fluid at rest. Although there are
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Figure 19. The swimming flexible plate.

no two-dimensional fish, the theory can be used to obtain insight in the propulsion of, for
instance, porpoises, whales and sharks, which have a tail with a large aspect ratio.

The lateral motions of the plate (Figure 19) in the y-direction are assumed to start at t = 0
and to be small

y = h(x, t) = O(ε), −1 < x < 1, 0 < t. (11.1)

A difficulty is that the flow is considered with respect to a non-inertial coordinate system
(x, y, t) which, with respect to the inertial system, say (X, Y, T ), has a velocity U(t) in the
negative X-direction. Because U(t) is a function of t , the system (x, y, t) has accelerations in
the X-direction. However, we can start with the (X, Y, T )-system and consider the nonlinear
equations of motion. Then, by the transformation

x = X +
∫ t

0
U(t̃) dt̃ , y = Y, t = T , (11.2)

we can transform the equations of motion, which are then valid with respect to the (x, y, t)-
system. After this we linearize these latter equations, from which the starting equations of Wu
arise, namely

∂u

∂t
+ U(t)∂u

∂x
= − 1

ρ

∂p

∂x
,
∂v

∂t
+ U(t)∂v

∂x
= − 1

ρ

∂p

∂y
. (11.3)

Differentiating the first equation in (11.3) with respect to x and the second with respect to
y and using div (u, v) = 0, we find

∂2p

∂x2
+ ∂

2p

∂y2
= 0; (11.4)

hence the perturbation pressure is a harmonic function. Then, the harmonic Prandtl accelera-
tion potential ϕ(x, y, t) = −p/ρ is introduced with p = 0 at infinity.

Because there is only vorticity at y = 0, we have u(x, y, t) = −u(x,−y, t), hence by
the first equation of (11.3) and by integrating from x = −∞ towards x, we find that the
acceleration potential is an odd function of y, or ϕ(x, y, t) = −ϕ(x,−y, t).

Outside the line segment (−1 < x < B(t), y = 0), where B(t) > 1 is the end of the
vorticity shed by the flexible plate, the velocity field is free of rotation and hence is the gradient
of a harmonic potential. Thus, also u and v are harmonic functions and by rot (u, v) = 0 and
div (u, v) = 0 they are conjugate harmonic functions, hence w(z, t) = u − iv is an analytic
function of z = x + iy, outside the mentioned line segment.

There also exists a harmonic function ψ(x, y, t) that is conjugated to the acceleration
potential ϕ(x, y, t)(∂ϕ/∂x = ∂ψ/∂y, ∂ϕ/∂y = −∂ψ/∂x). Hence, the analytic complex
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acceleration potential f (z, t) = ϕ + iψ can be formed. From this Wu writes the linearized
equations of motion (11.3) as

∂f

∂z
= ∂w

∂t
+ U(t)∂w

∂z
. (11.5)

Taking for instance ∂/∂z = ∂/∂x, using the conjugate relations and comparing the real and
imaginary parts of (11.5), we recover Equations (11.3).

The linearized boundary conditions at the flexible plate then become

v(x,+0, t) = v(x,−0, t) = ∂h

∂t
+ U(t)∂h

∂t
= V (x, t), |x| < 1, y = 0, (11.6)

−∂ψ
∂x

= ∂ϕ

∂y
= − 1

ρ

∂p

∂y
= ∂v

∂t
+ U(t)∂v

∂x
=

(
∂

∂t
+ U(t) ∂

∂x

)
V (x, t),

|x| < 1, y = 0,

(11.7)

ϕ(x, 0, t) = 0, |x| > 1, y = 0, (11.8)

|f (1, t)| <∞, ∀t; lim|z|→∞f (z, t) = 0; lim|z|→∞w(z, t) = 0. (11.9)

Now Wu replaces the time t by a parameter τ defined by

τ =
∫ t

0
U(t1) dt1, (11.10)

and it is assumed that U(t) is such that for each t there is a unique τ and there is an inverse
function t = t (τ ). This holds for U(t) > 0 and then the shed vorticity in the wake cannot
be transported back to the plate. In the following U(t(τ)) is denoted by U(τ), although U(t)
and U(τ) are different functions of their arguments. The same will hold also for some other
functions, for instance f (z, t (τ )) is denoted by f (z, τ).

Then Wu introduces

F(z, τ) = f (z, τ)/U(τ) def= E(x, y, τ) + iF(x, y, τ). (11.11)

By this the equation of motion (11.5) can be written more simply as

∂F

∂z
(z, τ) = ∂w

∂τ
(z, τ)+ ∂w

∂z
(z, τ). (11.12)

The Laplace transformation is defined by

F̃ (z, s) =
∫ ∞

0
e−sτF (z, τ) dτ, s = s1 + is2, s1 > 0. (11.13)

Application of this transformation to (11.12) yields

∂F̃

∂z
(z, s) =

(
∂

∂z
+ s

)
w̃(z, s), (11.14)

where it is assumed that the flexible plate starts moving at t = τ = 0, whence w(z, τ) =
u(x, y, τ) − iv(x, y, τ) = 0 for τ < 0. Integrating (11.14) along a line y = const. from
x = −∞ towards x, taking s real and considering the imaginary part of the result, we find
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F̃(x, y, s) = −ṽ(x, y, s) − s
∫ x

−∞
ṽ(ξ, y, s) dξ. (11.15)

This equation can be written as

ṽ(x, y, s) = −F̃(x, y, s) + s
∫ x

−∞
es(ξ−x)F̃(ξ, y, s) dξ, (11.16)

where the change from (11.15) to (11.16) follows from (11.14) by replacing ∂/∂z by ∂/∂x
and solving ṽ from the imaginary part of the resulting equation.

Applying the Laplace transformation to (11.6), we have on the plate ṽ(x, 0, s) = Ṽ (x, s)
and by (11.15) we find for F̃(x, 0, s) the relations

F̃(x,±0, s) = Im F̃ (x ± i0, s) = F̃1(x, s) + Ã0(s), |x| < 1, y = 0, (11.17)

F̃1(x, s) = −
(
∂

∂x
+ s

) ∫ x

−1
Ṽ (ξ, s) dξ, |x| < 1, y = 0, (11.18)

Ã0(s) = −s
∫ −1

−∞
ṽ(x,±0, s) dx = s

∫ −1

−∞
es(x+1)F̃(x, 0, s) dx. (11.19)

The second equality in (11.19) follows by comparing (11.15) and (11.16) in which x = −1
and y = 0 have been taken. By (11.8) and (11.11) the ‘pressure function’ is found to be.

Ẽ(x,±0, s) = Re F̃ (x ± i0, s) = 0, |x| > 1. (11.20)

Now the analysis of Wu has reached an important point. Equations (11.17) and (11.20),
together with the conditions (11.9), can be written in the form of a Hilbert problem for the
function F̃ (z, s) = Ẽ(x, y, s)+ iF̃(x, y, s), which is analytic in the whole z = x + iy plane,
apart from a jump over the interval (|x| < 1, y = 0). Because ϕ(x, y, t) is odd with respect
to y (below (11.4)) also Ẽ(x,+0, s) = −Ẽ(x,−0, s) and because Im F̃ (z, s) = F̃(x, y, s)
is known (11.17) at (|x| < 1, y = 0) except for the additive constant Ã0(s), we find

F̃+(x, 0, s) = −F̃−(x, 0, s) + 2iF̃(x, 0, s), |x| < 1, y = 0. (11.21)

This is the Hilbert problem for the analytic function F̃ (z, s), the solution of which is given
explicitly by Muskhelishvily in [21, p. 227 and further]. In fact, Wu formulates the problem as
a Riemann–Hilbert problem, by demanding (11.17) and (11.20) along the + side of the whole
real axis, hence for z = x + i0.

The solution of problem (11.21) is

F̃ (z, s) = 1

π i

(
z− 1

z+ 1

)1/2 ∫ 1

−1

(
1 + ξ
1 − ξ

)1/2
F̃(ξ, 0, s)

(ξ − z) dξ, (11.22)

in which Ã0(s) (11.17) still has to be determined for which we refer to Wu’s article. The
square roots (z− 1)1/2 and (z+ 1)1/2 are fixed by taking for each the positive square root for
z real and z > 1, while there is a branch cut along the real axis from z = −1 to z = 1.

Now Wu applies the inverse Laplace transformation to (11.22). It can be asked if this is
allowed because the analysis after (11.14) is based on the choice that s is real, while the inverse
Laplace transformation needs an integration in the complex plane along a line parallel to the
imaginary axis. However, this yields no difficulty, because it is known that Laplace transforms



Survey of the mathematical theory of fish locomotion 431

are analytic with respect to s (11.13) and can be continued analytically from the real axis into
the complex s plane.

In this way Wu arrives at a very complicated solution which we reproduce for the sake of
completeness :

f (z, t) = ϕ(x, y, t) + iψ(x, y, t) = −iU(t)

{
A0(τ )− 1

2a0(τ )

(
z − 1

z + 1

)1/2
}

+

+ 1

πi

∫ 1

−1

(
z2 − 1

1 − ξ 2

)1/2
ψ1(ξ, t)

(ξ − z) dξ,

(11.23)

a0(τ ) = −
∫ τ

0
{b0(τ

′)+ b1(τ
′)}H(τ − τ ′) dτ ′ + b1(τ ), (11.24)

bn(τ) = 2

π

∫ π

0
V (x, t (τ )) cos n θ dθ, (x = cos θ, n = 0, 1, 2 . . . ), (11.25)

H(τ) = 1

2π i

∫ ε+i∞

ε−i∞
esτ

K1(s)

K0(s)+K1(s)
ds, ε > 0, (11.26)

ψ1(x, t) = −
(
∂

∂t
+ U(t) ∂

∂x

)∫ x

−1
V (ξ, t) dξ, (11.27)

A0(τ ) = 1

2π i

∫ ε+i∞

ε−i∞
{ 1

2 ã0(s)− 1

π

∫ 1

−1
F̃1(ξ, s)(1 − ξ 2)−1/2 dξ } esτ ds, (11.28)

where K0(s) and K1(s) are modified Bessel functions of the second kind.
The suction force Ts at the nose is

Ts(τ) = 1
2πρ{Re a0(τ )}2. (11.29)

From these results all physical quantities can be calculated, such as the jump of the pressure
over the plate, the lift acting on the plate, the moment around some point acting on the plate,
the thrust and the energy loss. For all these complicated formulas we refer to Wu’s article [19,
Part I].

We mention here also the article of Wu and Chwang ‘Extraction of flow energy by fish
and birds in a wavy stream’ [24]. The authors consider the two-dimensional theory of a rigid
profile moving in a wavy incoming stream for which the transverse velocities have the same
frequency as that of the heaving and pitching motions of the profile. For a prescribed thrust
(coefficient) CT0 of the profile and a given amplitude ε̃ of the incoming transverse velocity
components, it is shown that a small contribution of the undesired leading-edge suction force
occurs when the reduced frequency σ is in the neighbourhood of a calculated σm, which is a
function of CT0 and ε̃.

12. Existence of optimum propulsion. Flat plate, two-dimensional theory

The two-dimensional linearized hydrodynamics of the thrust production by a flat plate carry-
ing out a purely harmonic motion that consists of combined heaving and pitching in a parallel
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Figure 20. Rigid flat plate in uniform parallel flow.

flow with a time-independent velocity is clearly a special case of Wu’s general theory that we
discussed in the previous section. This special case was discussed by Lighthill [14] and, very
comprehensively, by Wu [19, Part 2].

Lighthill and Wu considered the propulsion by means of a rigid plate as a tool to obtain
insight in the hydrodynamics of the carangiform of swimming of, for instance, cetaceans with
a lunate tail. In fact, this theory can be used for a strip theory of a wing of relatively large
aspect ratio such as the lunate sail.

Both mentioned authors start by choosing a purely harmonic motion and for a given fre-
quency discuss the influence of the amplitudes of the heaving and pitching parts of the motion
and of their phase difference on the efficiency of the propulsion. An interesting point is also
to what extent the suction force contributes to the total thrust, because this force can induce
flow separation at the nose of the plate. Wu gives results about the quotient of the mean value
of the suction force and the total mean thrust in order to be able to decide if a certain thrust
production is reliable with respect to leading-edge stall.

However, in this section and the following one we will try to give an impression of the
work of H.P. Urbach, which is partly based on the older work of Lighthill and Wu. We start
with his article ‘Existence of optimum propulsion by means of periodic motions of a rigid
profile’ [25]. This more recent work is rather advanced in that it uses functional analysis and
it seems interesting to get in touch with results that can be obtained by means of methods that
may yield farther reaching results than are possible by classical applied mathematics. Urbach
proves among other things that the purely harmonic motion, as assumed by Lighthill and
Wu, is the optimum motion in comparison with other periodic motions from a large class of
admitted ones. The dangerous suction force is kept in check by him by prescribing in advance
its tolerated contribution to the thrust.

The periodic motion of the plate is assumed to be of the form (Figure 20)

y = h(x, t) = l

2
a(t)+ α(t)x = O(ε), −l ≤ x ≤ l, (12.1)

where ε is again a small parameter used for linearization, 2l is the length of the plate and the
dimensionless functions a(t) and α(t) determine the heaving and the pitching of the plate.
The plate is placed in a uniform parallel flow of velocity U in the negative x-direction.

The mean value of the total thrust which depends on h(x, t) is denoted by T (h) and the
mean value of the suction force by Ts(h). The mean value of the lost kinetic energy per second
is E(h). Then the efficiency of the propulsion becomes

η(h) = UT (h)

UT (h)+ E(h). (12.2)
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The point (xp, yp) can be thought of as the point at which the plate is clutched and forced
to carry out the motion y = h(x, t) and can be used to put a constraint on the amplitude of the
plate, |h(xp, t)| ≤ C. This point may also be situated at the extension of the plate |xp| > l.
The chosen period of motion is τ0 and the demanded mean thrust is T0. The quotient of the
mean suction force Ts and the demanded mean thrust is r = Ts(h)/T0.

The optimization problem (P ) has then, in first instance, the following crude form

(P ) : Minimize E(h), subject to h ∈ A, (12.3)

A = {h : h(x, t + τ0) = h(x, t) ∀t, T (h) = T0, Ts(h) ≤ rT0 (0 ≤ r <∞),
max
t

|h(xp, t)| ≤ C, 0 ≤ C ≤ ∞},
(12.4)

where r and C are fixed numbers. When C = ∞ there is no constraint on the amplitude of the
motion. We note that in the condition on r, which yields the announced check on the suction
force, namely 0 ≤ r <∞, the inequality <∞ is essential; hence r has to be finite (see below
(13.13)).

The functions a(t) and α(t) that determine h(x, t) (12.1) will have the representation

a(t) =
∞∑

m=−∞
â(m)eimω0t , â(m) = 1

τ0

∫ τ0

0
a(t)e−imω0t dt, (12.5)

α(t) =
∞∑

m=−∞
α̂(m)eimω0t , α̂(m) = 1

τ0

∫ τ0

0
α(t)e−imω0t dt, (12.6)

ω0 = 2π/τ0, â(−m) = â(m), α̂(−m) = α̂(m), (12.7)

where a(t) and α(t) are real and a bar denotes complex conjugated values.
Because there are infinitely many coefficients â(m) and α̂(m), this problem is infinite-

dimensional as contrasted with the rigid-plate problem discussed by Lighthill and Wu, where
by the choice of a purely harmonic motion the problem was finite-dimensional. So here an
existence proof is appropriate.

Now the formulation of the optimization problem (P ) will be sharpened. First, the well-
known dimensionless coefficients

CT (h) = 4T (h)

πρU 2l
, CTs (h) = 4Ts(h)

πρU 2l
, CE(h) = 4E(h)

πρU 3l
, η(h) = CT

CT + CE . (12.8)

are introduced. Because h(x, t) is determined by a(t) and α(t), a function space has to be
chosen for the admitted functions a(t) and α(t). The function space that Urbach shows to be
suitable for this purpose is the Hilbert space H 1

τ0
consisting of functions that are periodic with

period τ0, absolutely continuous and whose derivative is square Lebesque integrable.
It can be proved that the first three coefficients defined in (12.8) depend only on the reduced

frequency σ0 = ω0l/U and on the Fourier coefficients of a(t) (12.5) and α(t) (12.6). Then,
for given σ0, CT0, r and C∞ with 0 < CT0 < ∞, 0 ≤ r < ∞, 0 < C∞ ≤ ∞ and for xp with
|xp| <∞, the optimization problem is reformulated as

(P ) : Minimize CE(a, α), subject to (a, α) ∈ A, (12.9)
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A =
{
(a, α) ∈ H 1

τ0
×H 1

τ0
; CT (a, α) = CT0, CTs (a, α) ≤ rCT0, || 1

2a + αxp
l

||∞ ≤ C∞
}
,

(12.10)

where ‖ 1
2a + αxp/l‖∞ = max | 1

2a(t) + α(t)xp/ l| for 0 ≤ t ≤ τ0 and where, instead of
the dependence on h of the coefficients (12.8), their dependence on (a, α) is denoted. The
quantities CE(a, α), CT (a, α) and CTs (a, α) are quadratic functionals of (a, α) that can be
calculated as a special case of Wu’s theory outlined in the previous section.

There exists a transformation of variables from the functions a(t) and α(t) to new functions
z(t) and ζ(t) such that, when written in terms of these new functions, two of the three quadratic
functionals become diagonalized. The transformation is given by

z(t) =
∞∑

m=−∞
ẑ(m)eimω0t , ζ(t) =

∞∑
m=−∞

ζ̂ (m)eimω0t , ẑ(−m) = ẑ(m), ζ̂ (−m) = ζ̂ (m),
(12.11)

ẑ(0) = â(0), ζ̂ (0) = α̂(0), (12.12)

 ẑ(m)
ζ̂ (m)

 =


B(mσ0)

1/2

(
−1 + 2i

mσ0

)
B(mσ0)

1/2

T11(mσ0)
1/2

(
−1 + 2i

mσ0

)
T11(mσ0)

1/2


 â(m)
α̂(m)

 , m �= 0. (12.13)

We do not give B(σ ) and T11(σ ) but only mention that they depend on Theodorsen’s function

J(σ) = H
(2)
1 (σ )

H
(2)
1 (σ )+ iH(2)0 (σ )

, σ > 0, (12.14)

where H(2)m (σ ) are Hankel functions of the second type.
Then it turns out that the first three coefficients of (12.8) become

CE(z) =
∞∑

m=−∞
2m2σ 2

0 |ẑ(m)|2, (12.15)

CT (z, ζ ) = CE(z)+
m∑

m=−∞
4m2σ 2

0 T̃12(mσ0)ẑ(m)ζ̂ (m)
def= CE(z)+ RT (z, ζ ), (12.16)

CTs (ζ ) = 8|ζ̂ (0)|2 +
∞∑

m=−∞
2m2σ 2

0 |ζ̂ (m)|2, (12.17)

T̃12(σ ) = −1

2

J(σ)

B(σ )1/2T11(σ )1/2
+

(
1 − i

σ

)
T11(σ )

1/2

B(σ )1/2
. (12.18)

It follows from (12.17) that, when CTs (ζ ) = 0, and hence, when the suction force is zero
for each t because it is a positive quantity, then ζ(t) = 0 since all its Fourier coefficients have
to be zero. Then, by (12.16) CT (z, 0) = CE(z) and the following interesting result is found

η(h) = CT (h)

CT (h)+ CE(h) = 1

2
, r = 0 , (12.19)
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which was not obtained in previous articles.
By using the new variables (z, ζ ) instead of (a, α) (12.11) and (12.12), Urbach remoulds

the minimizing problem (P ) (12.9) and (12.10) into a number of other forms from which he
finds after a complicated analysis, for which we refer to his paper, the final existence theorem.
We quote

THEOREM

For every σ0, CT0 , r, C∞ with 0 < CT0 < ∞, 0 ≤ r < ∞, 0 < C∞ and for every point
(xp, yp), there exists at least one solution of problem (P ). For fixed σ0, r, C∞ and xp, the
efficiency of the solution is non-increasing when the required mean thrust CT0 is increasing.
Furthermore, all motions for which the suction force at the nose of the plate vanishes at all
times have efficiency 1

2 , so that problem (P ) is trivial for r = 0.
In this theorem nothing is said about the uniqueness of the solution of the optimization

problem; for instance, from every solution an other solution can be obtained by means of an
equal phase shift in a(t) and α(t), but it is not excluded that there are also other solutions with
a more profound difference.

If, in the theorem, the case C∞ = 0 is excluded from the admitted interval of C∞, then only
pitching motions of the plate can occur around the point (xp, 0). This causes some difficulties,
because it can then be proved that not all values of r in the interval 0 ≤ r < ∞ can be used.
Also, the case r = ∞ is excluded, since in the next section we will discuss that for r = ∞ no
optimum motion can exist; see below (13.13).

13. Optimum propulsion. Flat plate, two-dimensional theory

We follow again Urbach, but now in his paper ‘On optimum propulsion by means of small
periodic motions of a rigid profile, I. Properties of optimum motions’ [26]. We consider mainly
the case that in the optimization problem (P ), given by (12.9) and (12.10), the constraint on
the amplitude of the point (xp, yp) is removed by taking C∞ = ∞.

The optimization problem expressed in the new variables z(t) and ζ(t) (12.12) and (12.13)
is now formulated as

(P̃ ) : Minimize CE(z) subject to z ∈ A1, (13.1)

A1 = {z ∈ H 1
τ0
, there exist ζ ∈ H 1

τ0
such that CT (z, ζ ) ≥ CT0, CTs (ζ ) ≤ rCT0}. (13.2)

The definition of the function space A1 is different from the function space A in (12.10);
instead of CT (a, α) = CT0 the inequality CT (z, ζ ) ≥ CT0 (desired shrust coefficient) is
imposed. This, however, yields the same solution of the optimization problem because the
existence theorem of the previous section states that the efficiency η is non-increasing with
increasing CT ; hence by (12.8) CE is increasing with CT . By this the minimum of CE occurs
also for CT = CT0 .

The advantage of the new formulation (13.2) is that only inequality conditions appear in
problem (P̃ ), so that the Kuhn–Tucker theorem can be applied. For the Kuhn–Tucker problem
see for instance the clear discussion by Luenberger in his book ‘Optimization by vector space
methods’ [27]. For this the Gateaux derivative of a functional is used, namely for CE (12.15)

δCE(z0)(z) = lim
ε→0

1

ε
{CE(z0 + εz)− CE(z0)} =

∞∑
m=−∞

4m2σ 2
0 ẑ0(m)ẑ(m), (13.3)
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where the derivative is at z0, z is arbitrary and ẑ(m) = ẑ(−m). Analogously, from (12.16) and
(12.17)

δCT (z0, ζ0)(z, ζ ) = δCE(z0)z +
∞∑

m=−∞
4m2σ 2

0 {T̃12(mσ0)ẑ0(m)ζ̂ (m)+

+T̃12(mσ0)ẑ(m)ζ̂0(m)},
(13.4)

δCTs (ζ0)(ζ ) = 16ζ̂0(0)ζ̂ (0)+
∞∑

m=−∞
4m2σ 2

0 ζ̂0(m)ζ̂ (m), (13.5)

with ζ̂ (m) = ζ̂ (−m).
In order to be able to apply the Kuhn–Tucker theorem, Urbach shows that the two inequal-

ity conditions in (13.2) satisfy certain regularity conditions. Then the Kuhn–Tucker theorem
states that, when z0 is a solution that minimizes CE(z) and when (z0, ζ0) satisfy the conditions
for (z, ζ ) in (13.2), there exist Lagrange multipliers λ1 ≥ 0 and λ2 ≥ 0 such that for every
(z, ζ ) ∈ H 1

τ0
×H 1

τ0

δCE(z0)(z)− λ1δCT (z0, ζ0)(z, ζ )+ λ2δCTs (ζ0)(ζ ) = 0, (13.6)

λ1{CT (z0, ζ0)− CT0} = 0, λ2{CTs (ζ0)− rCT0} = 0. (13.7)

Because z and ζ are arbitrary, it follows from (13.3)–(13.5) that (13.6) is equivalent to

λ2ζ̂0(0) = 0, (13.8)

(1 − λ1)ẑ0(m)− λ1T̃12(mσ0)ζ̂0(m) = 0, m = 1, 2, . . . , (13.9)

−λ1T̃12(mσ0)ẑ0(m)+ λ2ζ̂0(m) = 0, m = 1, 2, . . . . (13.10)

It can be proved that |T̃12(σ )|2 is an even function which decreases monotonically with
increasing σ = ωl/U . In addition, it holds that lim

σ→0
|T̃12(σ )|2 = ∞ and lim

σ→∞ σ
2|T̃12(σ )|2 =

9/16.
Hence T̃12(mσ) �= 0 for every m and from this it follows that λ2 > 0. Indeed, suppose that

λ2 = 0. Then by (13.9) and (13.10), because λ1 ≥ 0, we have z̃0(m) = 0 for m = 1, 2, . . . .
Then by (12.15) and (12.16) CT (z0, ζ0) = 0, which contradicts (13.2). So λ2 > 0 and then by
(13.8)

ζ̂0(0) = 0. (13.11)

Because ẑ(0) does not appear in CE,CT and CTs we may put

ẑ0(0) = 0. (13.12)

The fact that λ2 > 0 yields another interesting result, namely it follows from the second
equation of (13.7) that

CTs (ζ0) = rCT0 . (13.13)
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Hence the maximum admitted suction force occurs in the optimum motion. This is the reason
that it has to be demanded that r < ∞, otherwise the mean suction force becomes ∞ and
there does not exist a suitable optimum motion.

By (13.9) it is seen that, if λ1 = 0, then ẑ0(m) = 0 for m = 1, 2, . . . , which is not
allowed as we remarked above (13.11); hence λ1 > 0. Because (13.9) and (13.10) are two
homogeneous equations for ẑ0(m) and ζ̂0(m), the determinant of these equations has to be
zero, or

(1 − λ1)λ2

λ2
1

= |T̃12(mσ0)|2. (13.14)

The existence theorem in the previous section states that there is at least one optimum
solution of the problem, while it follows from the mentioned monotony of |T12(mσ0)|2 that
there is at most one m for which (13.14) holds. Because ζ̂0(0) = ẑ0(0) = 0, (13.11) and
(13.12), it is found that the optimum z0(t) and ζ0(t) are purely harmonic functions with the
same frequency, or

z0(t) = 2 Re (ẑ0(m)e
imω0t ), ζ0(t) = 2 Re (ζ̂0(m)e

imω0t ), (13.15)

for some value of m.
Then by (12.15)–(12.17) and (13.13) it is found that

CE(z0) = 4m2σ 2
0 |ẑ0(m)|2, (13.16)

CT (z0) = 4m2σ 2
0 {|ẑ0(m)+ T̃12(mσ0)ζ̂0(m)|2 − |T̃12(mσ0)|2|ζ̂0(m)|2}, (13.17)

CTs (ζ0) = 4m2σ 2
0 |ζ̂0(m)|2 = rCT0 . (13.18)

Because the phase of the motion is not of interest, ζ̂0(m) can be taken real and positive in
(13.18):

ζ̂0(m) = (rCT0)
1/2

2mσ0
. (13.19)

Hence, when m is considered to be fixed, it follows from (13.16) and (13.17) that ẑ0(m)

has to be the solution of the following optimization problem:

(P̃ ) : Minimize |z|2, where z is a complex number for which by (13.17) the following
holds

|z+ T̃12(mσ0)ζ̂0(m)|2 = CT0

4m2σ 2
0

+ |T̃12(mσ0)|2|ζ̂0(m)|2. (13.20)

From this it is found that

ẑ0(m) =
{(

1 + CT0

|T̃12(mσ0)|2|ζ̂0(m)|2
)1/2

− 1

}
T̃12(mσ0)ζ̂0(m). (13.21)

From (13.19) the corresponding rate-of-energy loss becomes

CE(z0) =
[
{r|T̃12(mσ0)|2 + 1}1/2 − r1/2|T̃12(mσ0)|

]2
CT0 . (13.22)
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as a function of r (12.4) for several values of σ0. From Urbach [26].
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as a function of r (12.4) for several values of σ0. From Urbach [26].

By the mentioned monotony property of |T̃12(mσ0)|2 it follows that CE(z0) assumes its mini-
mum for m = 1.

Using the inverse transformation of (12.12) and (12.13) and some manipulations, Urbach
has found for the optimum motion the form

y = h0(x, t) = l|â0(1)| sin ω0t + 2x|α̂0(1)| sin(ω0t + ϕ) . (13.23)

The amplitudes |â0(1)| and |α̂0(1)|, as well as the phase ϕ, in this formula are given in
Figures 21–23 as functions of σ and r, respectively

The efficiency η of the optimum motion is given in Figure 24. As we discussed in Section 2
below (2.16), this efficiency is independent of the desired thrust or independent of CT0 .

The phase difference between the heaving and pitching parts of the motion depends on the
choice of the position of the pitching axis, which is at x = 0 in (13.23). Applying a shift in
time t → t − ϕ/ω, we find for (13.23)

y = h0(x, t) = −l|â0(1)| · sin ϕ cos ω0t + 2|α̂0(1)|
{
x + l|â0(1)|

2|α̂0(1)| cos ϕ

}
sin ω0 t,
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Figure 23. ϕ as a function of r (12.4) for several values of σ0. From Urbach [26].

Figure 24. η as a function of σ0 for several values of r (12.4). From Urbach [26].

(13.24)

where this phase difference is 1
2π , which is constant, but now the pitching axis, which we

denote by x = x∗ = − 1
2 l|â0(1)| · |α̂0(1)|−1 cos ϕ, is variable. Next we discuss the concept

of feathering which was introduced by Lighthill in ‘Hydromechanics of aquatic propulsion:
a survey’ [28]. This concept is coupled to the description of the plate motion (13.24) with
the constant phase difference 1

2π between heaving and pitching. The angle β1 between plate
and x-axis and the slope β2 of the trajectory through the fluid of the pitching axis, which is
represented by the point Q defined by

Q =
(

− l|â0(1)|
2|α̂0(1)| cos ϕ, −l|â0(1)| sin ϕ cos ω0t

)
, (13.25)
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Figure 25. Feathering F = β1/β2,- - - - trajectory of Q with respect to fluid.

Table 1.

are (Figure 25) given by

β1 = ∂y

∂x
= 2|α̂0(1)| sin ω0t, β2 = 1

U

∂y

∂t
= lω0

U
|â0(1)| sin ϕ cos ω0t, (13.26)

respectively. Then the feathering is defined by

F = β1

β2
= 2|α̂0(1)|
σ0|â0(1)| , (13.27)

which will be smaller than 1 in the case of good propulsion, which follows from Figure 25,
where Q has to move upwards sufficiently fast in order that the plate yields a thrust in the
positive x-direction.

Using Figures 21–23 we can determine from (13.24) the location x = x∗ of the pitching
axis for a phase difference of 1

2π between heaving and pitching, from (13.27) the feathering
F and from Figure 24 the efficiency η. This is carried out for σ0 = π/6 and σ0 = π/3 and for
r = 0·1 and r = 0·5. We remark that, because we have measured the values of |â0(1)|, |α̂0(1)|
and ϕ from the graphs, the results will not be very accurate; however, some insight can be
gained from them; see Table 1.

The advantage of the theory of Urbach is that for each given pair σ0 = ω0l/U and r,
the position of the pitching axis for the representation (13.24) of the motion is uniquely
determined in case of the optimum motion. It follows from the table that, for larger values
of r (r = 0·5), hence for a larger contribution of the suction force at the leading edge of
the plate, the pitching axis is situated at the rear half of the plate, while for smaller values
of r (r = 0·1) the pitching axis is at the front part of the plate, both in the case of optimum
motions. These results can possibly add to the results obtained by Lighthill [13] and Wu [19,
Part 2], who both come to the conclusion that the ‘best’ region of the pitching axis in (13.24)
is somewhere between the 3/4 chord point and the trailing edge or −l < x∗ < −0·5l. It seems
desirable to have more results based on Urbach’s theory than the four listed in Table 1.
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U

Figure 26. Lunate tail (hatched region), with shed vorticity. From Chopra and Kambe [29].

For more information about the optimum propulsion by means of the rigid plate we refer to
Urbach [26]. Among other things, he discusses the influence of a constraint on the amplitude
of the motion of point (xp, yp) (Figure 20) which, as we mentioned before, is an arbitrary point
on the plate where it can be forced to carry out a desired motion. This constraint is formulated
in (12.10) by means of a chosen finite value of C∞. When the demanded thrust coefficient
is sufficiently high, this constraint becomes active and a purely harmonic optimum motion is
in general impossible; then the heaving and pitching motions have infinitely many non-zero
Fourier coefficients, which complicates the analysis considerably. It is shown by Urbach that
the trajectory of (xp, yp) then reaches smoothly its maximum y = C∞, retains this value some
time until it leaves smoothly y = C∞ and crosses over smoothly to its limit at the other side.

When, C∞ < ∞, it is also possible to optimize the reduced frequency σ ; this is discussed
at the end of [26, Part II]. It is perhaps interesting to investigate if this has some bearing on
the frequency σ used by fishes when they have by their structural constellation some, be it not
rigorously fixed, maximum value of the amplitude of their tail motion.

14. Different types of research on caudal-fin propulsion

Up to now we have discussed mainly two hydrodynamic theories, namely slender-body theory
and the two-dimensional theory of the waving plate. These two theories are based on elegant
mathematical considerations and by this give insight in the influence of some important para-
meters. However, it is also of interest to consider more specific hydrodynamic problems, for
instance, the propulsion by a lunate tail. As is remarked by Lighthill, this type of tail is found
in such distinct aquatic animals as fast sharks and cetacean mammals which clearly came to
this form along different paths in their evolution. Because of its large aspect ratio, the first
approximation of such a tail is afforded by the two-dimensional theory of the waving plate.
However, its finite span, its sweep back and its tapered shape are neglected.

Chopra and Kambe in their ‘Hydrodynamics of lunate tail swimming propulsion, Part 2’
[29] have calculated, by means of a lifting-surface theory for several flat lunate tails, values of
reduced frequency, positions of the pitching axis and feathering parameters, the thrust coeffi-
cient and the efficiency. For the specific values of the parameters we refer to the article. From
the many numerical results they found two general properties which we mention here. First,
a smoothly and not too strongly bent leading edge diminishes the contribution of the suction
force to the total thrust without loss of efficiency and hence delays flow separation at the
leading edge. Second, they found that, for some fixed reasonable value of the thrust coefficient,
the parameter values for maximum efficiency are such that no negative hydrodynamical work
is done in the oscillation of the tail. The latter is important because, as we quote, ‘biologists
have shown that positive energy is incrusted in the musculature not only when animals do
positive work but also when they do negative work’, which yields an efficiency lower than the
hydrodynamical efficiency.
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Figure 27. (a) The considered three wing planforms, (b) Isurus oxyrinchus with lunate tail. Based on van Dam
[31].

The shed vorticity drawn in Figure 26 belongs to a lunate tail motion with good efficiency,
at the moment when the tail is in the plane of drawing and is moving downwards.

We also mention Karpouzian, Spedding and Cheng ‘Lunate tail swimming propulsion,
Part 2. Performance analysis’ [30]. From their numerical results they draw the following two
general conclusions:

First, an increase in the heaving of the peduncle (connection of tail and body) decreases
the value of the optimum sweep back until the latter becomes zero. Second, we quote: ‘if
one postulates a tendency in carangiform evolution towards increasingly restricted motion of
the caudal peduncle, in the interests of reducing wake-energy losses, for example, then the
increase in sweep angle of the tail appears a design option to compensate for the reduced
peduncle heaving amplitude’. Both conclusions are apparently related.

Finally, with respect to the lunate tail, we mention the work of van Dam ‘Efficiency char-
acteristics of crescent wings and caudal fins’ [31], who made calculations of the induced
resistance of wings with the shape of a lunate tail in steady flow. The calculations by means
of surface panels (1000) on the wing and on part of the wake simulate the vortex roll-up at the
tips of the wings. The author defines the ‘induced efficiency’ e by

Di = 2L2/(πρU 2b2e), (14.1)

where Di is the induced drag, L denotes the lift, b is the span of the wing and U is the
free-stream velocity.

Three types of wings are considered (Figure 27a), all with the same aspect ratio b2/S = 7,
where S is the area of the planform, viz., (1) elliptical wing with straight quarter chord line,
(2) wing with straight trailing edge, (3) wing with typical crescent shape, all having the same
spanwise chord distribution. Each wing has the symmetrical NACA 0012 section shape in the
streamwise direction. The wings are placed under an angle of incidence α = 4◦. Then the
numbers e have the values (1) e = 1·000, (2) e = 1·045 and (3) e = 1·088 which clearly
show a favourable property of the steady lunate tail which, as the author states, will manifest
itself also in case of unsteady propulsion when the reduced frequency σ = ωcav/U < 0·6,
where ω is the radian frequency and cav the meanchord.

The results of van Dam mentioned above differ from the results found by Ashenberg and
Weihs in their papers ‘Curved lifting line theory for thin planar wings’ [32] and ‘Minimum
induced drag of wings with curved planform’ [33]. These papers use Prandtl’s lifting-line the-
ory adapted to curved planforms (that are flat). They do not predict an improved aerodynamic
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efficiency for crescent-shaped planforms. So it seems that the nonlinear approach given in
[31] is needed for the understanding of the efficacy of the lunate tail.

We now mention the paper by Cheng, Zhuang and Tong entitled ‘Analysis of swimming
three-dimensional waving plates’ [34] which considers numerically the swimming of a flex-
ible rectangular plate of finite span, hence it partly shows to which extent the analytical
two-dimensional theory of Wu (Section 11) is valid for finite span. The considered plate has
chord-length 1, the incoming velocity in the x-direction is given by U = 1. The prescribed
motion of the plate has the form h(x, t) = xm cos(ωt − kx), where m = 0,1,2 or 3, ω = 8
and −3 ≤ k ≤ 7. One of the remarkable results is then that the efficiencies of these swimming
plate motions are only very weakly dependent on the aspect ratio A which are considered for
A = 0·5, A = 1 and A = 8·5. The dependency is increasing somewhat with m, where for
m = 3, contrary to expectation, the efficiency is slightly decreasing with increasing values of
A.

Katz and Weihs, in their ‘Hydrodynamic propulsion by large amplitude oscillation of an
airfoil with chordwise flexibility’ [35] study the two-dimensional case of a propelling plate
carrying out a large-amplitude motion, governed by the translation and rotation of the leading
edge, in such a way that the induced velocities are small. The plate is flexible and bends
passively under the influence of pressures, while its wake moves in concurrence with the
induced velocities.

It is shown, for a rigid plate, doing modestly oscillating motions for which the reduced
frequency σ = 1

2
c/U < 0·3, where 
 is the radian frequency, c the chord-length and U
the incoming velocity, wake deformation is not important. They find that, when the phase
difference between pitching and heaving is 1

2π , the pitching axis should be located, with
a view to efficiency and thrust, in the rear quarter of the profile; see also Table 1 and the
discussion thereof.

The influence of a uniform elasticity of the plate is that the overall instantaneous lift
decreases; however, this lift is directed, by the passively bending of the plate, more in the
direction of advance of the plate and by this can lead to a moderate gain of efficiency.

The analogous problem for a slender propulsor is also treated by Katz and Weihs [36].
Finally, we discuss a complementary approach for estimating the highest possible effi-

ciency of a large-amplitude propulsive motion of a caudal fin of finite span. By this method
the optimum shed vorticity is determined, so to speak, a priori and not by the way in which
the active and/or passive flexible fin moves through the fluid.

The fish swims with a velocity U in the negative x-direction (Figure 28) and we assume
the path of the trailing edge of its tail W to be known in one way or another. This path is the
periodic strip H , which does not need to be flat in the y-direction, so that it can belong to, for
instance, a lunate tail, and it has a large amplitude in the z-direction.

Assume that the vorticity shed by the trailing edge of the tail is small of O(ε) and remains
where it is formed on H . This is a reasonable assumption when the reduced frequency of the
motion of the tail is not too high. We want to determine the optimum shed vorticity on H
and by this the highest possible efficiency of propulsion. This can be found in a simple way
as is discussed for instance by Potze and Sparenberg in ‘On the efficiency of optimum finite
amplitude sculling propulsion’ [37].

Consider the geometric strip H to be materialized, so that is becomes impermeable while
its thickness is zero. Place this strip in a homogeneous flow of velocity λ parallel to the x-axis.
Then vorticity λγ (x, y) is needed on H in order for the flow not to penetrate H , which can
be calculated by a vortex lattice method. The vorticity has to be chosen so that the circulation
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Figure 28. Strip H passed through by trailing edge of tail W .

along any contour C around H is zero because a wing moving in an undisturbed fluid can
leave behind only such vorticity. Apart from the still unknown factor λ, this vorticity λγ (x, y)
is the optimum vorticity left behind on H by W .

The unknown factor λ follows from the desired mean value of the thrust T = O(ε) which
is directly coupled to the momentum of the fluid in the x-direction induced by λγ (x, y), which
we now assume to be present at the two-sided infinite strip H when the tail has travelled to
x = −∞. Indeed, T equals the mean momentum of the fluid over a length U in the x-direction
by which λ = O(ε) is known.

The mean value of the kinetic energy E = O(ε2) left behind over a distance U can then
be calculated and the efficiency η of the propulsion becomes

η = UT (ε)

UT (ε)+ E(ε2)
= 1 −O(ε). (14.2)

Because it is likely that a living aquatic animal will swim in an energy-saving way, it is
not unlikely that the passive elasticity of the tail and its active deformations are such that this
value can have a meaning.

15. Some special ways in which fish may swim

In the foregoing sections the subjects were rather fundamental regarding the hydrodynamics
of the swimming of fish, i.e., how a fish propels itself. In this section we mention briefly how
fish swim in order to attain some specific aims. Here the word aim is used in an evolutionary
sense where the behaviour of living creatures is probably the outcome of blind changes in the
genes of their ancestors of which the useful ones remain and cause the survival of the fittest in
relation to the momentary environment.

We start with the article ‘Optimal fish cruising speed’ [38] by Weihs about the speed at
which a fish can cover the largest possible distance when it has a given finite amount of usable
energy at its disposal. This energy has to be used for the propulsive rate of work Wp and for
the rate of energy Wm needed for its internal metabolic process when the fish is at rest. Weihs
considers the relation

E = (Wp +Wm)t, (15.1)
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Figure 29. Scheme of in phase swimming fishes in a school. Free after Weihs.

where E is the available energy and t the total time of swimming. When T is the mean value
of the thrust, u the mean velocity of swimming and τ a drag coefficient, the following realistic
relation can, for instance, be assumed

T = τu2. (15.2)

The relation between Wp and T is formulated by means of the efficiency η of the propulsion
mechanism of the fish

ηWp = T u. (15.3)

From experiments carried out by Webb with the rainbow trout reported in ‘The swimming
energetics of trout, II Oxygen consumption and swimming efficiency’ [39], it was found that
the relation between the efficiency η and the velocity u can, by introducing a constant β, be
written as

η = βu. (15.4)

When these relations are combined, it is found that the distance l that can be covered by
using the given amount of available energy E becomes

l(u) = Eu
/ (

τ

β
u2 +Wm

)
. (15.5)

Differentiation of l(u) with respect to u and by putting dl(u)/du = 0, the optimum cruising
speed uopt and, by this, the optimum Wp,opt are found

u2
opt = β

τ
Wm → Wp,opt = Wm. (15.6)

Hence, under the assumptions (15.2) and (15.4) it is found that for the optimum cruising
speed, the rate of energy used for the propulsion equals the rate of energy needed for the
internal metabolic process at rest.

For the inverse problem, when it is asked to determine the optimum velocity ũopt for mini-
mum energy expenditure for covering a prescribed distance l, it is found that ũopt = uopt. This
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follows from (15.5), but now with l as a given constant and E = E(u), by putting dE/du = 0.
The equality of both velocities can also be argued from the meaning of the problem.

We refer to Weihs [38] for further biological applications of these results.
Next we mention the way of swimming which is called burst-and-glide or burst-and-coast

swimming. The following is based on the supposition that, by the swimming movements of
a fish, its drag can increase, even by a factor of 3 or more. This seems to be in contradiction
with the results described in Section 5 that were obtained by a robotic model of a swimming
blue fin tuna. The model had a length of 1·25 m and swam at a Reynolds number Ul/ν = 106

and it was found that its drag decreased by its swimming motions compared to its drag when
it is towed through the water as a rigid body. However, when smaller fish are considered,
by swimming at another Reynolds number, it is perhaps possible, as many authors believe
and can defend, that there will be an increase of drag by the swimming motions. Then the
burst-and-glide procedure yields a way of avoiding this higher drag to a certain extent.

This was investigated in the paper ‘Energetic advances of burst swimming of fish’ [40] by
Weihs. He considers the following periodic behaviour of the fish. A swimming period starts
with a relatively large thrust T during a time interval (0 − t1) by which the fish is accelerated
from a velocity Ui to a velocity Uf . Then the propulsive motion of the fish stops, so that the
thrust is zero and the fish glides as a rigid body, while by its drag the velocity decreases from
Uf again to Ui at the moment (t1 + t2) when a new period starts.

During the accelerating phase energy is used and the velocity increases, by which the
efficiency of the propulsion η also increases (15.4), while the drag of the strongly squirming
fish is assumed to be large. Here, however, a result of Section 5 below point (5) can play
an interesting part. There it was measured that, by extra thrust production, which is possibly
related to the acceleration here, a drag reduction of more than 70% can occur, instead of the
assumed increase. Then, instead of an unfavourable acceleration motion, a favourable one
would occur.

After the acceleration follows the gliding as a rigid body during which no energy is used
and the drag is assumed to be small. By using some assumptions, (15.4) is one of these, Weihs
calculates the mean energy used per unit of length for this type of periodic propulsion and
compares this with the energy needed per unit of length when the fish swims with a constant
velocity equal to the mean velocity of the burst-and-glide procedure.

He arrives at the conclusion that it can happen theoretically that by burst-and-glide swim-
ming only 54% of the energy necessary for swimming with the above mentioned constant
mean velocity is needed.

We will mention yet another way of swimming, namely the schooling of fish. Schooling
fish swim in a strikingly well-arranged formation. In his article ‘Hydromechanics of fish
schooling’ [41] Weihs discusses the swimming in phase of a two-dimensional school of fish
in a shallow-water basin. Then the vorticity shed by the tails of the fish can be considered
approximately as short concentrated vertical vortex lines ending at the bottom of the basin
and at the surface of the water; Figure 29.

Straight behind fish A2 the fluid flow induced by its alternatingly shed vortices has compo-
nents opposite to the swimming direction of the fish, while outside these vortices the induced
flow has a component in the swimming direction; see the dashed vectors in between rows I
and II. So a fish B2 of row II can better choose its swimming position in between his predeces-
sors A1 and A2 of row I. By a correct spacing, the fish of row II can, to some extent, destroy
the vortices of the fish of row I, points Q1 and Q2. This can be helpful for the fish in row III
which then have a less disturbed incoming flow.
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Quite a different approach to the investigation of schooling is used in ‘Models for tuna
school formation’ [42] by Stöcker where a so-called automaton model is considered that has
general application, as the author states, to complex configurations of animals in motion. There
a two-dimensional cellular space is introduced in which, in the case of schooling, in each cell
a number (0, 1, 2, . . . ) of fish can be present that migrate to neighbouring cells by means of
suitably chosen rules. These rules can be based on the induced velocity fields by neighbouring
fishes or even on oxygen depletion by which a school will break up. Then, after a number of
time steps (as large as 2000), schooling formations can arise.

16. Acknowledgment

The author thanks his collague Prof. Dr. B.L.J. Braaksma for some discussions about the
theory of analytic functions. He is also grateful to the referees for mentioning additonal
references, for valuable remarks and for indicating inaccuracies in the script.

References

1. M. Yousuff Husaini (ed.), Collected Works of Sir James Lighthill. New York: Oxford University Press (1996)
532 pp.

2. R.McN. Alexander, The history of fish mechanics. In: P.W. Webb and D. Weihs (eds.), Fish Biomechanics.
New York: Praeger Press (1983) 1–35.

3. C.M. Breder, The locomotion of fishes. Zoologica 4 (1926) 159–256.
4. R.W. Blake, Fish Locomotion. Cambridge: Cambridge University Press (1983) 208 pp.
5. G.I. Taylor, Analysis of the swimming of long and narrow animals. Proc. R. Soc. London A214 (1952)

158–183.
6. M.J. Lighthill, Note on the swimming of slender fish. J. Fluid Mech. 9 (1960) 305–317.
7. T.Y. Wu, Swimming of a waving plate. J. Fluid Mech. 10 (1961) 321–344.
8. J.A. Sparenberg, Hydrodynamic Propulsion and Its Optimization. Dordrecht: Kluwer Academic Publishers

(1995) 365 pp.
9. P.G. Saffman, The self propulsion of a deformable body in a perfect fluid. J. Fluid Mech 28 (1967) 385–389.

10. J. Gray, Studies in animal locomotion VI: The propulsive powers of the dolphin. J. Exp. Biol. 13 (1936)
192–199.

11. M.J. Lighthill, Large amplitude elongated body theory of fish locomotion. Proc. R. Soc. London B179 (1971)
125–138.

12. D.S. Barret, M.S. Triantafyllou, D.K.P. Yue, M.A. Grosenbaugh and M.J. Wolfgang, Drag reduction in fish-
like locomotion. J. Fluid Mech. 392 (1999) 183–212.

13. R. Coene, Notes on the efficiency of propulsion of bodies in waves. J. Fluid Mech. 153 (1985) 103–122.
14. M.J. Lighthill, Aquatic animal propulsion of high hydromechanical efficiency. Ann. Rev. Fluid Mech. 1

(1970) 413–446.
15. W.S. Childress, Mechanics of Swimming and Flying. New York: Courant Institute of Mathematical Sciences

(1977).
16. C.S. Wardle and A. Reid, The application of large amplitude elongated body theory to measure swimming

power in fish. In: T.J. Pedley (ed.), Scale Effects in Animal Motion. New York: Academic Press (1977)
pp. 299–313.

17. M.J. Lighthill and R.W. Blake, Biofluid dynamics of balistiform and gymnotiform locomotion. Part 1,
Biological background and analysis by elongated-body theory. J. Fluid Mech. 212 (1990) 183–207.

18. M.J. Lighthill, Biofluid dynamics of balistiform and gymnotiform locomotion. Part 2. The pressure distrib-
ution arising in two-dimensional irrotational flow from a general motion of a flexible plate normal to itself.
Part 3. Momentum enhancement in the presence of a body of elliptical cross-section. Part 4. Short wavelength
limitations on momentum enhancement. J. Fluid Mech. 213 (1990) 1–28.

19. T.Y. Wu, Hydrodynamics of swimming propulsion. Part 1. Swimming of a two-dimensional flexible plate at
variable forward speeds in an inviscid fluid. Part 2. Some optimum shape problems. Part 3. Swimming and



448 J.A. Sparenberg

optimum motions of slender fish with side fins. J. Fluid Mech. 46 (1971) Part 1, 337–355; Part 2, 521–544;
Part 3, 545–568.

20. T.Y. Wu and J.N. Newman, Unsteady flow around a slender fish-like body. J. Mech. Eng. Sci. 14 (1972) N7.
21. N.J. Muskhelishvili, Singular Integral Equations. Groningen: P. Noordhoff N.V. (1953).
22. J.N. Newman and T.Y. Wu, A generalized slender-body theory for fish-like forms. J. Fluid Mech. 57 (1973)

673–693.
23. J.N. Newman, The force on a slender fish-like body. J. Fluid Mech. 58 (1973) 689–702.
24. T.Y. Wu and A.T. Chwang, Extraction of flow energy by fish and birds in a wavy stream. In: T.Y. Wu,

C.J. Brokaw and C. Brennen (eds.) Swimming and Flying in Nature, Vol. 2. New York: Plenum Press (1974)
pp. 687–702.

25. H.P. Urbach, Existence of optimum propulsion by means of periodic motions of a rigid profile. Studies App.
Math. 81 (1989) 93–116.

26. H.P. Urbach, On optimum propulsion by means of small periodic motions of a rigid profile, I. Properties
of optimum motions, II. Optimization of the period and numerical results. Studies App. Math. 82 (1990) I
121–180, II 181–215.

27. D.G. Luenberger, Optimization by Vector Space Methods. New York: John Wiley and sons (1969).
28. M.J. Lighthill, Hydromechanics of aquatic propulsion: a survey. Ann. Rev. Fluid Mech. 1 (1969) 413–446.
29. M.G. Chopra and T. Kambe, Hydrodynamics of lunate tail swimming propulsion. Part 2. J. Fluid Mech. 79

(1977) 46–69.
30. G. Karpouzian, G. Spedding and H.K. Cheng, Lunate tail swimming propulsion, Part 2, Performance

analysis. J. Fluid Mech. 210 (1990) 329–351.
31. C.P. van Dam, Efficiency characteristics of crescent shaped wings and caudal fins. Nature 325 (1987) Letters

to Nature.
32. J. Ashenberg and D. Weihs, Curved lifting line theory for thin planar wings. Israel J. Techn. 20 (1982)

160–165.
33. J. Ashenberg and D. Weihs, Minimum induced drag of wings with curved planform. J. Aircraft 21 (1984)

89–91.
34. J.Y. Cheng, L.X. Zhuang and B.G. Tong, Analysis of swimming three-dimensional waving plates. J. Fluid

Mech. 232 (1991) 341–355.
35. J. Katz and D. Weihs, Hydrodynamic propulsion by large amplitude oscillation of an airfoil with chordwise

flexibility. J. Fluid Mech. 88 (1978) 485–497.
36. J. Katz and D. Weihs, Large amplitude unsteady motion of a flexible slender propulsor. J. Fluid Mech. 90

(1979) 713–723.
37. W. Potze and J.A. Sparenberg, On the efficiency of optimum finite amplitude sculling propulsion. Int. Ship-

building Progress 30 (1983) 238–244.
38. D. Weihs, Optimal fish cruising speed. Nature 245 (1973) 48–50.
39. P.W. Webb, The swimming energetics of trout II. Oxygen consumption and swimming efficiency. J. Exp.

Biol. 55 (1971) 521–540.
40. D. Weihs, Energetic advances of burst swimming of fish. J. Theor. Biol. 48 (1974) 215–229.
41. D. Weihs, Hydromechanics of fish scooling. Nature 241 (1973) 290–291.
42. S. Stöcker, Models for tuna school formation. Math. Biosci. 156 (1999) 167–190.


